Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,94 +1,90 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
-
from pdf2image import convert_from_path
|
| 4 |
-
from byaldi import RAGMultiModalModel
|
| 5 |
-
from transformers import Qwen2VLForConditionalGeneration,
|
| 6 |
-
from qwen_vl_utils import process_vision_info
|
| 7 |
-
import torch
|
| 8 |
-
import subprocess
|
| 9 |
-
|
| 10 |
-
# Install flash-attn if not already installed
|
| 11 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 12 |
-
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
#
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
inputs=[pdf_input, query_input],
|
| 92 |
-
outputs=[output_text, output_images],
|
| 93 |
-
title="Multimodal RAG with Image Query - By Pejman Ebrahimi"
|
| 94 |
-
).launch()
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from pdf2image import convert_from_path
|
| 4 |
+
from byaldi import RAGMultiModalModel
|
| 5 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 6 |
+
from qwen_vl_utils import process_vision_info
|
| 7 |
+
import torch
|
| 8 |
+
import subprocess
|
| 9 |
+
|
| 10 |
+
# Install flash-attn if not already installed
|
| 11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 12 |
+
|
| 13 |
+
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
|
| 14 |
+
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
|
| 15 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
|
| 16 |
+
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
|
| 17 |
+
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
| 18 |
+
|
| 19 |
+
@spaces.GPU()
|
| 20 |
+
def process_pdf_and_query(pdf_file, user_query):
|
| 21 |
+
# Convert the PDF to images
|
| 22 |
+
images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path
|
| 23 |
+
num_images = len(images)
|
| 24 |
+
|
| 25 |
+
# Indexing the PDF in RAG
|
| 26 |
+
RAG.index(
|
| 27 |
+
input_path=pdf_file.name,
|
| 28 |
+
index_name="image_index", # index will be saved at index_root/index_name/
|
| 29 |
+
store_collection_with_index=False,
|
| 30 |
+
overwrite=True
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
# Search the query in the RAG model
|
| 34 |
+
results = RAG.search(user_query, k=1)
|
| 35 |
+
if not results:
|
| 36 |
+
return "No results found.", num_images
|
| 37 |
+
|
| 38 |
+
# Retrieve the page number and process image
|
| 39 |
+
image_index = results[0]["page_num"] - 1
|
| 40 |
+
messages = [
|
| 41 |
+
{
|
| 42 |
+
"role": "user",
|
| 43 |
+
"content": [
|
| 44 |
+
{
|
| 45 |
+
"type": "image",
|
| 46 |
+
"image": images[image_index],
|
| 47 |
+
},
|
| 48 |
+
{"type": "text", "text": user_query},
|
| 49 |
+
],
|
| 50 |
+
}
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
# Generate text with the Qwen model
|
| 54 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
| 55 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 56 |
+
inputs = processor(
|
| 57 |
+
text=[text],
|
| 58 |
+
images=image_inputs,
|
| 59 |
+
videos=video_inputs,
|
| 60 |
+
padding=True,
|
| 61 |
+
return_tensors="pt",
|
| 62 |
+
)
|
| 63 |
+
inputs = inputs.to("cuda")
|
| 64 |
+
|
| 65 |
+
# Generate the output response
|
| 66 |
+
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
| 67 |
+
generated_ids_trimmed = [
|
| 68 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 69 |
+
]
|
| 70 |
+
output_text = processor.batch_decode(
|
| 71 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
return output_text[0], num_images
|
| 75 |
+
|
| 76 |
+
# Define the Gradio Interface
|
| 77 |
+
pdf_input = gr.File(label="Upload PDF") # Single PDF file input
|
| 78 |
+
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF") # User query input
|
| 79 |
+
output_text = gr.Textbox(label="Model Answer") # Output for the model's answer
|
| 80 |
+
output_images = gr.Textbox(label="Number of Images in PDF") # Output for number of images
|
| 81 |
+
|
| 82 |
+
# Launch the Gradio app
|
| 83 |
+
demo = gr.Interface(
|
| 84 |
+
fn=process_pdf_and_query,
|
| 85 |
+
inputs=[pdf_input, query_input], # List of inputs
|
| 86 |
+
outputs=[output_text, output_images], # List of outputs
|
| 87 |
+
title="Multimodal RAG with Image Query - By Pejman Ebrahimi"
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
demo.launch(debug=True) # Start the interface
|
|
|
|
|
|
|
|
|
|
|
|