Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -33,20 +33,24 @@ processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_rem
|
|
33 |
|
34 |
@spaces.GPU()
|
35 |
def process_pdf_and_query(pdf_file, user_query):
|
|
|
36 |
images = convert_from_path(pdf_file.name)
|
37 |
num_images = len(images)
|
38 |
|
|
|
39 |
RAG.index(
|
40 |
input_path=pdf_file.name,
|
41 |
-
index_name="image_index",
|
42 |
store_collection_with_index=False,
|
43 |
overwrite=True
|
44 |
)
|
45 |
|
|
|
46 |
results = RAG.search(user_query, k=1)
|
47 |
if not results:
|
48 |
return "No results found.", num_images
|
49 |
|
|
|
50 |
image_index = results[0]["page_num"] - 1
|
51 |
messages = [
|
52 |
{
|
@@ -61,6 +65,7 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
61 |
}
|
62 |
]
|
63 |
|
|
|
64 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
65 |
image_inputs, video_inputs = process_vision_info(messages)
|
66 |
inputs = processor(
|
@@ -72,6 +77,7 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
72 |
)
|
73 |
inputs = inputs.to("cuda")
|
74 |
|
|
|
75 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
76 |
generated_ids_trimmed = [
|
77 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
@@ -82,37 +88,44 @@ def process_pdf_and_query(pdf_file, user_query):
|
|
82 |
|
83 |
return output_text[0], num_images
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
css = """
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
"""
|
110 |
|
111 |
-
|
112 |
-
### Multimodal RAG
|
113 |
-
|
114 |
|
115 |
-
|
116 |
"""
|
117 |
|
118 |
footer = """
|
@@ -124,36 +137,21 @@ footer = """
|
|
124 |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
|
125 |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
|
126 |
<br>
|
127 |
-
Made with π by Pejman Ebrahimi
|
128 |
</div>
|
129 |
"""
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
title="",
|
143 |
-
theme='freddyaboulton/dracula_revamped',
|
144 |
-
css=css,
|
145 |
-
description=explanation,
|
146 |
-
allow_flagging="auto"
|
147 |
-
)
|
148 |
-
|
149 |
-
with demo:
|
150 |
-
gr.HTML("""
|
151 |
-
<div class='title'>
|
152 |
-
Multimodal RAG with Image Query -
|
153 |
-
<a href="https://github.com/arad1367" target="_blank" style="color: #ff79c6; text-decoration: none;">
|
154 |
-
Pejman Ebrahimi
|
155 |
-
</a>
|
156 |
-
</div>
|
157 |
-
""")
|
158 |
gr.HTML(footer)
|
159 |
-
|
|
|
|
33 |
|
34 |
@spaces.GPU()
|
35 |
def process_pdf_and_query(pdf_file, user_query):
|
36 |
+
# Convert the PDF to images
|
37 |
images = convert_from_path(pdf_file.name)
|
38 |
num_images = len(images)
|
39 |
|
40 |
+
# Indexing the PDF in RAG
|
41 |
RAG.index(
|
42 |
input_path=pdf_file.name,
|
43 |
+
index_name="image_index", # index will be saved at index_root/index_name/
|
44 |
store_collection_with_index=False,
|
45 |
overwrite=True
|
46 |
)
|
47 |
|
48 |
+
# Search the query in the RAG model
|
49 |
results = RAG.search(user_query, k=1)
|
50 |
if not results:
|
51 |
return "No results found.", num_images
|
52 |
|
53 |
+
# Retrieve the page number and process image
|
54 |
image_index = results[0]["page_num"] - 1
|
55 |
messages = [
|
56 |
{
|
|
|
65 |
}
|
66 |
]
|
67 |
|
68 |
+
# Generate text with the Qwen model
|
69 |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
70 |
image_inputs, video_inputs = process_vision_info(messages)
|
71 |
inputs = processor(
|
|
|
77 |
)
|
78 |
inputs = inputs.to("cuda")
|
79 |
|
80 |
+
# Generate the output response
|
81 |
generated_ids = model.generate(**inputs, max_new_tokens=50)
|
82 |
generated_ids_trimmed = [
|
83 |
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
|
|
88 |
|
89 |
return output_text[0], num_images
|
90 |
|
91 |
+
|
92 |
+
pdf_input = gr.File(label="Upload PDF")
|
93 |
+
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
|
94 |
+
output_text = gr.Textbox(label="Model Answer")
|
95 |
+
output_images = gr.Textbox(label="Number of Images in PDF")
|
96 |
+
|
97 |
+
# CSS styling
|
98 |
css = """
|
99 |
+
body {
|
100 |
+
background-color: #282a36;
|
101 |
+
font-family: Arial, sans-serif;
|
102 |
+
color: #f8f8f2;
|
103 |
+
}
|
104 |
+
h1 {
|
105 |
+
text-align: center;
|
106 |
+
font-size: 2.5em;
|
107 |
+
font-weight: bold;
|
108 |
+
margin-bottom: 20px;
|
109 |
+
}
|
110 |
+
footer {
|
111 |
+
margin-top: 20px;
|
112 |
+
}
|
113 |
+
.duplicate-button {
|
114 |
+
text-align: center;
|
115 |
+
background-color: #50fa7b;
|
116 |
+
color: #282a36;
|
117 |
+
font-weight: bold;
|
118 |
+
border: none;
|
119 |
+
padding: 10px;
|
120 |
+
cursor: pointer;
|
121 |
+
}
|
122 |
"""
|
123 |
|
124 |
+
description = """
|
125 |
+
### About Multimodal RAG
|
126 |
+
Multimodal Retrieval-Augmented Generation (RAG) integrates both images and text to provide more comprehensive and contextually accurate responses to user queries. It uses a retriever model like **ColPali** to search and retrieve relevant data and a large language model (LLM) like **Qwen/Qwen2-VL-2B-Instruct** to generate natural language answers based on the input.
|
127 |
|
128 |
+
In this demo, **ColPali** is used as a multimodal retriever, and the **Byaldi** library from answer.ai simplifies the use of ColPali. We are utilizing **Qwen2-VL-2B-Instruct** for text generation, enabling both text and image-based queries.
|
129 |
"""
|
130 |
|
131 |
footer = """
|
|
|
137 |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
|
138 |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
|
139 |
<br>
|
140 |
+
Made with π by <a href="https://github.com/arad1367" target="_blank">Pejman Ebrahimi</a>
|
141 |
</div>
|
142 |
"""
|
143 |
|
144 |
+
# Gradio Interface
|
145 |
+
with gr.Blocks(theme='freddyaboulton/dracula_revamped', css=css) as demo:
|
146 |
+
gr.Markdown("<h1>Multimodal RAG with Image Query</h1>")
|
147 |
+
gr.Markdown(description)
|
148 |
+
with gr.Row():
|
149 |
+
pdf_input = gr.File(label="Upload PDF")
|
150 |
+
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
|
151 |
+
output_text = gr.Textbox(label="Model Answer")
|
152 |
+
output_images = gr.Textbox(label="Number of Images in PDF")
|
153 |
+
|
154 |
+
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
gr.HTML(footer)
|
156 |
+
|
157 |
+
demo.launch(debug=True)
|