Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,209 Bytes
7e738ef 78a7c54 f9c5a74 f42f33d 78a7c54 bc890cd 78a7c54 f9c5a74 f42f33d f9c5a74 f21b6d3 2eb1042 f9c5a74 f21b6d3 f9c5a74 2eb1042 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 f21b6d3 f9c5a74 2f43f91 2eb1042 bc890cd 2f43f91 2eb1042 2f43f91 bc890cd 2eb1042 bc890cd 2eb1042 bc890cd 0a97d2e 2eb1042 f21b6d3 bc890cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 |
import spaces
import os
import gradio as gr
from pdf2image import convert_from_path
from byaldi import RAGMultiModalModel
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
from qwen_vl_utils import process_vision_info
import torch
import torchvision
import subprocess
# Run the commands from setup.sh to install poppler-utils
def install_poppler():
try:
subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
except FileNotFoundError:
print("Poppler not found. Installing...")
# Run the setup commands
subprocess.run("apt-get update", shell=True)
subprocess.run("apt-get install -y poppler-utils", shell=True)
# Call the Poppler installation check
install_poppler()
# Install flash-attn if not already installed
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the RAG Model and the Qwen2-VL-2B-Instruct model
RAG = RAGMultiModalModel.from_pretrained("vidore/colpali")
model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct",
trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval()
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
@spaces.GPU()
def process_pdf_and_query(pdf_file, user_query):
# Convert the PDF to images
images = convert_from_path(pdf_file.name) # pdf_file.name gives the file path
num_images = len(images)
# Indexing the PDF in RAG
RAG.index(
input_path=pdf_file.name,
index_name="image_index", # index will be saved at index_root/index_name/
store_collection_with_index=False,
overwrite=True
)
# Search the query in the RAG model
results = RAG.search(user_query, k=1)
if not results:
return "No results found.", num_images
# Retrieve the page number and process image
image_index = results[0]["page_num"] - 1
messages = [
{
"role": "user",
"content": [
{
"type": "image",
"image": images[image_index],
},
{"type": "text", "text": user_query},
],
}
]
# Generate text with the Qwen model
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=[text],
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
inputs = inputs.to("cuda")
# Generate the output response
generated_ids = model.generate(**inputs, max_new_tokens=50)
generated_ids_trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
return output_text[0], num_images
pdf_input = gr.File(label="Upload PDF")
query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF")
output_text = gr.Textbox(label="Model Answer")
output_images = gr.Textbox(label="Number of Images in PDF")
footer = """
<div style="text-align: center; margin-top: 20px;">
<a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> |
<a href="https://github.com/arad1367" target="_blank">GitHub</a> |
<a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> |
<a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> |
<a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> |
<a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a>
<br>
Made with π by Pejman Ebrahimi
</div>
"""
explanation = """
<div style="text-align: center; margin-bottom: 20px;">
<h2 style="font-weight: bold; font-size: 24px;">Multimodal RAG (Retrieval-Augmented Generation)</h2>
<p>
This application utilizes the ColPali model as a multimodal retriever,
which retrieves relevant information from documents and generates answers
using the Qwen/Qwen2-VL-2B-Instruct LLM (Large Language Model)
via the Byaldi library, developed by Answer.ai.
</p>
</div>
"""
demo = gr.Interface(
fn=process_pdf_and_query,
inputs=[pdf_input, query_input],
outputs=[output_text, output_images],
title="Multimodal RAG with Image Query - By <a href='https://github.com/arad1367'>Pejman Ebrahimi</a>",
theme='freddyaboulton/dracula_revamped',
)
with demo:
gr.HTML(explanation)
gr.HTML(footer)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button", elem_id="duplicate-button") # Duplicate button
gr.Button("Submit", elem_classes="submit-button", style={"background-color": "green", "color": "white"}) # Custom Submit Button
demo.launch(debug=True)
|