Đinh Ngọc Ân
first commit
f6a046f
raw
history blame
2.17 kB
import gradio as gr
import os
import torch
from model import create_effnetb2_model
from timeit import default_timer as timer
from typing import Tuple, TypedDict
# Setup class names
class_names = ["pizza", "steak", "sushi"]
# Create EffNetB2 model instance and transform
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
# Load model weights
effnetb2.load_state_dict(
torch.load(
os.path.join("models", "09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth"),
map_location=torch.device("cpu")
)
)
# Predict function
def predict(img) -> Tuple[Dict, float]:
# Start a timer
start_time = timer()
# Transform the input image for use with EffNetB2
img = effnetb2_transforms(img).unsqueeze(0)
# put model into eval mode, make prediction
effnetb2.eval()
with torch.inference_mode():
pred_probs = torch.softmax(effnetb2(img), dim=-1)
# Create a prediction label and predcition probability
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(class_names)}
# Calculate pred time and pred dict
pred_time = round(timer() - start_time, 5)
return pred_labels_and_probs, pred_time
# Gradio app
# Create title, description and article strings
title = "FoodVision Mini 🍕🥩🍣"
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
# Create an example list
example_list = [["examples/" + example] for example in os.listdir("examples")]
# Create the Gradio demo
demo = gr.Interface(fn=predict,
inputs=gr.inputs.Image(type="pil"),
outputs=[gr.outputs.Label(num_top_classes=3, label="Predictions"),
gr.outputs.Number(label="Prediction time (s)")],
examples=example_list,
title=title,
description=description,
article=article)
# Launch the demo!
demo.launch(debug=False,
share=True)