Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, TypedDict | |
# Setup class names | |
class_names = ["pizza", "steak", "sushi"] | |
# Create EffNetB2 model instance and transform | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names)) | |
# Load model weights | |
effnetb2.load_state_dict( | |
torch.load( | |
os.path.join("models", "09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth"), | |
map_location=torch.device("cpu") | |
) | |
) | |
# Predict function | |
def predict(img) -> Tuple[Dict, float]: | |
# Start a timer | |
start_time = timer() | |
# Transform the input image for use with EffNetB2 | |
img = effnetb2_transforms(img).unsqueeze(0) | |
# put model into eval mode, make prediction | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim=-1) | |
# Create a prediction label and predcition probability | |
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(class_names)} | |
# Calculate pred time and pred dict | |
pred_time = round(timer() - start_time, 5) | |
return pred_labels_and_probs, pred_time | |
# Gradio app | |
# Create title, description and article strings | |
title = "FoodVision Mini 🍕🥩🍣" | |
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." | |
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." | |
# Create an example list | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
# Create the Gradio demo | |
demo = gr.Interface(fn=predict, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=[gr.outputs.Label(num_top_classes=3, label="Predictions"), | |
gr.outputs.Number(label="Prediction time (s)")], | |
examples=example_list, | |
title=title, | |
description=description, | |
article=article) | |
# Launch the demo! | |
demo.launch(debug=False, | |
share=True) | |