import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, TypedDict # Setup class names class_names = ["pizza", "steak", "sushi"] # Create EffNetB2 model instance and transform effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names)) # Load model weights effnetb2.load_state_dict( torch.load( os.path.join("models", "09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth"), map_location=torch.device("cpu") ) ) # Predict function def predict(img) -> Tuple[Dict, float]: # Start a timer start_time = timer() # Transform the input image for use with EffNetB2 img = effnetb2_transforms(img).unsqueeze(0) # put model into eval mode, make prediction effnetb2.eval() with torch.inference_mode(): pred_probs = torch.softmax(effnetb2(img), dim=-1) # Create a prediction label and predcition probability pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(class_names)} # Calculate pred time and pred dict pred_time = round(timer() - start_time, 5) return pred_labels_and_probs, pred_time # Gradio app # Create title, description and article strings title = "FoodVision Mini 🍕🥩🍣" description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi." article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)." # Create an example list example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, inputs=gr.inputs.Image(type="pil"), outputs=[gr.outputs.Label(num_top_classes=3, label="Predictions"), gr.outputs.Number(label="Prediction time (s)")], examples=example_list, title=title, description=description, article=article) # Launch the demo! demo.launch(debug=False, share=True)