Spaces:
Runtime error
Runtime error
Đinh Ngọc Ân
commited on
Commit
·
f6a046f
1
Parent(s):
56cacaf
first commit
Browse files- 09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth +3 -0
- app.py +65 -0
- examples/2582289.jpg +0 -0
- examples/3622237.jpg +0 -0
- examples/592799.jpg +0 -0
- model.py +31 -0
- requirements.txt +3 -0
09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:232b9150391e812a5c6ecba4348eb35c649f8c8baa1a390ecea7f8c6f5def965
|
3 |
+
size 31307450
|
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from model import create_effnetb2_model
|
6 |
+
from timeit import default_timer as timer
|
7 |
+
from typing import Tuple, TypedDict
|
8 |
+
|
9 |
+
# Setup class names
|
10 |
+
class_names = ["pizza", "steak", "sushi"]
|
11 |
+
|
12 |
+
# Create EffNetB2 model instance and transform
|
13 |
+
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=len(class_names))
|
14 |
+
|
15 |
+
# Load model weights
|
16 |
+
effnetb2.load_state_dict(
|
17 |
+
torch.load(
|
18 |
+
os.path.join("models", "09_pretrained_effnetb2_feature_extractor_pizza_steak_sushi_20_percent.pth"),
|
19 |
+
map_location=torch.device("cpu")
|
20 |
+
)
|
21 |
+
)
|
22 |
+
|
23 |
+
# Predict function
|
24 |
+
def predict(img) -> Tuple[Dict, float]:
|
25 |
+
# Start a timer
|
26 |
+
start_time = timer()
|
27 |
+
|
28 |
+
# Transform the input image for use with EffNetB2
|
29 |
+
img = effnetb2_transforms(img).unsqueeze(0)
|
30 |
+
|
31 |
+
# put model into eval mode, make prediction
|
32 |
+
effnetb2.eval()
|
33 |
+
with torch.inference_mode():
|
34 |
+
pred_probs = torch.softmax(effnetb2(img), dim=-1)
|
35 |
+
|
36 |
+
# Create a prediction label and predcition probability
|
37 |
+
pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(class_names)}
|
38 |
+
|
39 |
+
# Calculate pred time and pred dict
|
40 |
+
pred_time = round(timer() - start_time, 5)
|
41 |
+
|
42 |
+
return pred_labels_and_probs, pred_time
|
43 |
+
|
44 |
+
# Gradio app
|
45 |
+
# Create title, description and article strings
|
46 |
+
title = "FoodVision Mini 🍕🥩🍣"
|
47 |
+
description = "An EfficientNetB2 feature extractor computer vision model to classify images of food as pizza, steak or sushi."
|
48 |
+
article = "Created at [09. PyTorch Model Deployment](https://www.learnpytorch.io/09_pytorch_model_deployment/)."
|
49 |
+
|
50 |
+
# Create an example list
|
51 |
+
example_list = [["examples/" + example] for example in os.listdir("examples")]
|
52 |
+
|
53 |
+
# Create the Gradio demo
|
54 |
+
demo = gr.Interface(fn=predict,
|
55 |
+
inputs=gr.inputs.Image(type="pil"),
|
56 |
+
outputs=[gr.outputs.Label(num_top_classes=3, label="Predictions"),
|
57 |
+
gr.outputs.Number(label="Prediction time (s)")],
|
58 |
+
examples=example_list,
|
59 |
+
title=title,
|
60 |
+
description=description,
|
61 |
+
article=article)
|
62 |
+
|
63 |
+
# Launch the demo!
|
64 |
+
demo.launch(debug=False,
|
65 |
+
share=True)
|
examples/2582289.jpg
ADDED
![]() |
examples/3622237.jpg
ADDED
![]() |
examples/592799.jpg
ADDED
![]() |
model.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch, torchvision
|
2 |
+
from torch import nn
|
3 |
+
|
4 |
+
def create_effnetb2_model(num_classes: int = 3,
|
5 |
+
seed:int=42):
|
6 |
+
"""Creates an EfficientNetB2 feature extractor model and transforms.
|
7 |
+
|
8 |
+
Args:
|
9 |
+
num_classes (int, optional): Number of output neurons in the output layer. Defaults to 3
|
10 |
+
seed (int, optional): Random seed value. Defaults to 42.
|
11 |
+
|
12 |
+
Returns:
|
13 |
+
torchvision.models.efficientnet_b2: EffNetB2 feature extractor model
|
14 |
+
|
15 |
+
"""
|
16 |
+
# 1. Setup pretrained EffNMetB2 weights
|
17 |
+
effnetb2_weights = torchvision.models.EfficientNet_B2_Weights.DEFAULT
|
18 |
+
effnetb2_transform = effnetb2_weights.transforms()
|
19 |
+
# 2. Setup pretrained model
|
20 |
+
effnetb2 = torchvision.models.efficientnet_b2(weights=effnetb2_weights)
|
21 |
+
# 3. Freeze the base layers
|
22 |
+
for param in effnetb2.parameters():
|
23 |
+
param.requires_grad = False
|
24 |
+
|
25 |
+
# 4. Change the classsifier to 3 classes
|
26 |
+
torch.manual_seed(seed)
|
27 |
+
effnetb2.classifier = nn.Sequential(
|
28 |
+
nn.Dropout(p=0.3, inplace=True),
|
29 |
+
nn.Linear(in_features=1408, out_features=num_classes))
|
30 |
+
|
31 |
+
return effnetb2, effnetb2_transform
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.0
|
2 |
+
torchvision==0.13.0
|
3 |
+
gradio==3.1.4
|