Spaces:
Running
Running
File size: 8,668 Bytes
883f80d 97e9ddc b5d0029 883f80d fec5809 7c7ec80 963a894 6f9d64a 883f80d fec5809 59f797f 97e9ddc 883f80d b5d0029 97e9ddc 883f80d 97e9ddc 883f80d b5d0029 883f80d b5d0029 883f80d b5d0029 883f80d 97e9ddc 4146752 b5d0029 97e9ddc 883f80d 9b3d576 883f80d 97e9ddc 883f80d 97e9ddc 9b3d576 883f80d 97e9ddc c6b094e f26565c b5d0029 883f80d 9b3d576 97e9ddc 9b3d576 b5d0029 aa832f1 b5d0029 8291c90 b5d0029 883f80d 97e9ddc b5d0029 6f9d64a 9b3d576 97e9ddc b5d0029 97e9ddc b5d0029 6f9d64a 7c7ec80 6f9d64a b5d0029 6f9d64a b5d0029 7c7ec80 b5d0029 6f9d64a b5d0029 9b3d576 b5d0029 59f797f b5d0029 7c7ec80 4e6e6d6 c58ed05 4e6e6d6 7c7ec80 b5d0029 7c7ec80 4e6e6d6 b5d0029 59f797f b5d0029 59f797f e12b67a 59f797f aa832f1 883f80d b5d0029 4146752 59f797f b5d0029 59f797f b5d0029 59f797f 883f80d 64a799b f26565c 64a799b b5d0029 883f80d b5d0029 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
import os
import gradio as gr
from zipfile import ZipFile
from PIL import Image
from .convert import nifti_to_obj
from .css_style import css
from .inference import run_model
from .logger import flush_logs
from .logger import read_logs
from .logger import setup_logger
from .utils import load_ct_to_numpy
from .utils import load_pred_volume_to_numpy
# setup logging
LOGGER = setup_logger()
class WebUI:
def __init__(
self,
model_name: str = None,
cwd: str = "/home/user/app/",
share: int = 1,
):
self.file_output = None
self.model_selector = None
self.stripped_cb = None
self.registered_cb = None
self.run_btn = None
self.slider = None
self.download_file = None
# global states
self.images = []
self.pred_images = []
self.model_name = model_name
self.cwd = cwd
self.share = share
self.class_name = "Airways" # default
self.class_names = {
"Airways": "CT_Airways",
}
self.result_names = {
"Airways": "Airways",
}
self.volume_renderer = gr.Model3D(
clear_color=[0.0, 0.0, 0.0, 0.0],
label="3D Model",
visible=True,
elem_id="model-3d",
height=512,
)
# self.volume_renderer = ShinyModel3D()
def set_class_name(self, value):
LOGGER.info(f"Changed task to: {value}")
self.class_name = value
def combine_ct_and_seg(self, img, pred):
return (img, [(pred, self.class_name)])
def upload_file(self, file):
out = file.name
LOGGER.info(f"File uploaded: {out}")
return out
def process(self, mesh_file_name):
path = mesh_file_name.name
run_model(
path,
model_path=os.path.join(self.cwd, "resources/models/"),
task=self.class_names[self.class_name],
name=self.result_names[self.class_name],
)
LOGGER.info("Converting prediction NIfTI to OBJ...")
nifti_to_obj("prediction.nii.gz")
LOGGER.info("Loading CT to numpy...")
self.images = load_ct_to_numpy(path)
LOGGER.info("Loading prediction volume to numpy..")
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
slider = gr.Slider(
minimum=0,
maximum=len(self.images) - 1,
value=int(len(self.images) / 2),
step=1,
label="Which 2D slice to show",
interactive=True,
)
return "./prediction.obj", slider
def get_img_pred_pair(self, k):
img = self.images[k]
img_pil = Image.fromarray(img)
seg_list = []
seg_list.append((self.pred_images[k], self.class_name))
return img_pil, seg_list
def toggle_sidebar(self, state):
state = not state
return gr.update(visible=state), state
def package_results(self):
"""Generates text files and zips them."""
output_dir = "temp_output"
os.makedirs(output_dir, exist_ok=True)
zip_filename = os.path.join(output_dir, "generated_files.zip")
with ZipFile(zip_filename, 'w') as zf:
zf.write("./prediction.nii.gz")
return zip_filename
def setup_interface_outputs(self):
with gr.Row():
with gr.Group():
with gr.Column(scale=2):
t = gr.AnnotatedImage(
visible=True,
elem_id="model-2d",
color_map={self.class_name: "#ffae00"},
height=512,
width=512,
)
self.slider = gr.Slider(
minimum=0,
maximum=1,
value=0,
step=1,
label="Which 2D slice to show",
interactive=True,
)
self.slider.change(fn=self.get_img_pred_pair, inputs=self.slider, outputs=t)
with gr.Group():
self.volume_renderer.render()
self.download_btn = gr.DownloadButton(label="Download results", visible=False)
self.download_file = gr.File(label="Download Zip", interactive=True, visible=False)
def run(self):
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column(scale=1, visible=True) as sidebar_left:
logs = gr.Textbox(
placeholder="\n" * 16,
label="Logs",
info="Verbose from inference will be displayed below.",
lines=38,
max_lines=38,
autoscroll=True,
elem_id="logs",
show_copy_button=True,
# scroll_to_output=False,
container=True,
# line_breaks=True,
)
timer = gr.Timer(value=1, active=True)
timer.tick(fn=read_logs, inputs=None, outputs=logs)
# demo.load(read_logs, None, logs, every=0.5)
with gr.Column(scale=2):
with gr.Row():
with gr.Column(min_width=150):
sidebar_state = gr.State(True)
btn_toggle_sidebar = gr.Button(
"Toggle Sidebar",
elem_id="toggle-button",
)
btn_toggle_sidebar.click(
self.toggle_sidebar,
[sidebar_state],
[sidebar_left, sidebar_state],
)
btn_clear_logs = gr.Button("Clear logs", elem_id="logs-button")
btn_clear_logs.click(flush_logs, [], [])
self.file_output = gr.File(file_count="single", elem_id="upload")
self.model_selector = gr.Dropdown(
list(self.class_names.keys()),
label="Task",
info="Which structure to segment.",
multiselect=False,
)
with gr.Column(min_width=150):
self.run_btn = gr.Button("Run segmentation", variant="primary", elem_id="run-button")
with gr.Row():
gr.Examples(
examples=[
os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
],
inputs=self.file_output,
outputs=self.file_output,
fn=self.upload_file,
cache_examples=False,
)
gr.Markdown(
"""
**NOTE:** Inference might take several minutes (Airways: ~8 minutes), see logs to the left. \\
The segmentation will be available in the 2D and 3D viewers below when finished.
"""
)
self.setup_interface_outputs()
# Define the signals/slots
self.file_output.upload(self.upload_file, self.file_output, self.file_output)
self.model_selector.input(fn=lambda x: self.set_class_name(x), inputs=self.model_selector, outputs=None)
self.run_btn.click(fn=self.process, inputs=[self.file_output],
outputs=[self.volume_renderer, self.slider]).then(fn=lambda:
gr.DownloadButton(visible=True), inputs=None, outputs=self.download_btn)
self.download_btn.click(fn=self.package_results, inputs=[], outputs=self.download_file).then(fn=lambda
file_path: gr.File(label="Download Zip", visible=True, value=file_path), inputs=self.download_file,
outputs=self.download_file)
# sharing app publicly -> share=True:
# https://gradio.app/sharing-your-app/
# inference times > 60 seconds -> need queue():
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=self.share)
|