Spaces:
Running
Running
Added support to download prediction
Browse files- demo/src/gui.py +40 -15
- demo/src/inference.py +5 -1
demo/src/gui.py
CHANGED
|
@@ -59,7 +59,8 @@ class WebUI:
|
|
| 59 |
visible=True,
|
| 60 |
elem_id="model-3d",
|
| 61 |
camera_position=[90, 180, 768],
|
| 62 |
-
|
|
|
|
| 63 |
|
| 64 |
def set_class_name(self, value):
|
| 65 |
LOGGER.info(f"Changed task to: {value}")
|
|
@@ -75,22 +76,31 @@ class WebUI:
|
|
| 75 |
|
| 76 |
def process(self, mesh_file_name):
|
| 77 |
path = mesh_file_name.name
|
|
|
|
|
|
|
|
|
|
| 78 |
run_model(
|
| 79 |
path,
|
| 80 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
| 81 |
task=self.class_names[self.class_name],
|
| 82 |
name=self.result_names[self.class_name],
|
|
|
|
| 83 |
)
|
| 84 |
LOGGER.info("Converting prediction NIfTI to OBJ...")
|
| 85 |
-
nifti_to_obj("
|
| 86 |
|
| 87 |
LOGGER.info("Loading CT to numpy...")
|
| 88 |
self.images = load_ct_to_numpy(path)
|
| 89 |
|
| 90 |
LOGGER.info("Loading prediction volume to numpy..")
|
| 91 |
-
self.pred_images = load_pred_volume_to_numpy("
|
| 92 |
|
| 93 |
return "./prediction.obj"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
def get_img_pred_pair(self, k):
|
| 96 |
k = int(k)
|
|
@@ -98,7 +108,6 @@ class WebUI:
|
|
| 98 |
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
|
| 99 |
visible=True,
|
| 100 |
elem_id="model-2d",
|
| 101 |
-
).style(
|
| 102 |
color_map={self.class_name: "#ffae00"},
|
| 103 |
height=512,
|
| 104 |
width=512,
|
|
@@ -122,9 +131,7 @@ class WebUI:
|
|
| 122 |
autoscroll=True,
|
| 123 |
elem_id="logs",
|
| 124 |
show_copy_button=True,
|
| 125 |
-
scroll_to_output=False,
|
| 126 |
container=True,
|
| 127 |
-
line_breaks=True,
|
| 128 |
)
|
| 129 |
demo.load(read_logs, None, logs, every=1)
|
| 130 |
|
|
@@ -160,7 +167,7 @@ class WebUI:
|
|
| 160 |
label="Task",
|
| 161 |
info="Which structure to segment.",
|
| 162 |
multiselect=False,
|
| 163 |
-
|
| 164 |
)
|
| 165 |
model_selector.input(
|
| 166 |
fn=lambda x: self.set_class_name(x),
|
|
@@ -173,16 +180,33 @@ class WebUI:
|
|
| 173 |
"Run analysis",
|
| 174 |
variant="primary",
|
| 175 |
elem_id="run-button",
|
| 176 |
-
|
| 177 |
-
|
| 178 |
size="lg",
|
| 179 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
run_btn.click(
|
| 181 |
fn=lambda x: self.process(x),
|
| 182 |
inputs=file_output,
|
| 183 |
outputs=self.volume_renderer,
|
| 184 |
)
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
with gr.Row():
|
| 187 |
gr.Examples(
|
| 188 |
examples=[
|
|
@@ -202,16 +226,17 @@ class WebUI:
|
|
| 202 |
)
|
| 203 |
|
| 204 |
with gr.Row():
|
| 205 |
-
with gr.Box():
|
| 206 |
with gr.Column():
|
| 207 |
# create dummy image to be replaced by loaded images
|
| 208 |
t = gr.AnnotatedImage(
|
| 209 |
visible=True, elem_id="model-2d"
|
| 210 |
-
).style(
|
| 211 |
-
color_map={self.class_name: "#ffae00"},
|
| 212 |
-
height=512,
|
| 213 |
-
width=512,
|
| 214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
self.slider.input(
|
| 217 |
self.get_img_pred_pair,
|
|
@@ -221,7 +246,7 @@ class WebUI:
|
|
| 221 |
|
| 222 |
self.slider.render()
|
| 223 |
|
| 224 |
-
with gr.Box():
|
| 225 |
self.volume_renderer.render()
|
| 226 |
|
| 227 |
# sharing app publicly -> share=True:
|
|
|
|
| 59 |
visible=True,
|
| 60 |
elem_id="model-3d",
|
| 61 |
camera_position=[90, 180, 768],
|
| 62 |
+
height=512,
|
| 63 |
+
)
|
| 64 |
|
| 65 |
def set_class_name(self, value):
|
| 66 |
LOGGER.info(f"Changed task to: {value}")
|
|
|
|
| 76 |
|
| 77 |
def process(self, mesh_file_name):
|
| 78 |
path = mesh_file_name.name
|
| 79 |
+
curr = path.split("/")[-1]
|
| 80 |
+
self.extension = ".".join(curr.split(".")[1:])
|
| 81 |
+
self.filename = curr.split(".")[0] + "-" + self.class_names[self.class_name]
|
| 82 |
run_model(
|
| 83 |
path,
|
| 84 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
| 85 |
task=self.class_names[self.class_name],
|
| 86 |
name=self.result_names[self.class_name],
|
| 87 |
+
output_filename=self.filename + "." + self.extension
|
| 88 |
)
|
| 89 |
LOGGER.info("Converting prediction NIfTI to OBJ...")
|
| 90 |
+
nifti_to_obj(path=self.filename + "." + self.extension)
|
| 91 |
|
| 92 |
LOGGER.info("Loading CT to numpy...")
|
| 93 |
self.images = load_ct_to_numpy(path)
|
| 94 |
|
| 95 |
LOGGER.info("Loading prediction volume to numpy..")
|
| 96 |
+
self.pred_images = load_pred_volume_to_numpy(self.filename + "." + self.extension)
|
| 97 |
|
| 98 |
return "./prediction.obj"
|
| 99 |
+
|
| 100 |
+
def download_prediction(self):
|
| 101 |
+
if (not self.filename) or (not self.extension):
|
| 102 |
+
LOGGER.error("The prediction is not available or ready to download. Wait until the result is available in the 3D viewer.")
|
| 103 |
+
return self.filename + "." + self.extension
|
| 104 |
|
| 105 |
def get_img_pred_pair(self, k):
|
| 106 |
k = int(k)
|
|
|
|
| 108 |
self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
|
| 109 |
visible=True,
|
| 110 |
elem_id="model-2d",
|
|
|
|
| 111 |
color_map={self.class_name: "#ffae00"},
|
| 112 |
height=512,
|
| 113 |
width=512,
|
|
|
|
| 131 |
autoscroll=True,
|
| 132 |
elem_id="logs",
|
| 133 |
show_copy_button=True,
|
|
|
|
| 134 |
container=True,
|
|
|
|
| 135 |
)
|
| 136 |
demo.load(read_logs, None, logs, every=1)
|
| 137 |
|
|
|
|
| 167 |
label="Task",
|
| 168 |
info="Which structure to segment.",
|
| 169 |
multiselect=False,
|
| 170 |
+
scale=1.0,
|
| 171 |
)
|
| 172 |
model_selector.input(
|
| 173 |
fn=lambda x: self.set_class_name(x),
|
|
|
|
| 180 |
"Run analysis",
|
| 181 |
variant="primary",
|
| 182 |
elem_id="run-button",
|
| 183 |
+
#scale=1.0,
|
| 184 |
+
# size=1.0,
|
| 185 |
size="lg",
|
| 186 |
)
|
| 187 |
+
#.style(
|
| 188 |
+
# full_width=False,
|
| 189 |
+
# size="lg",
|
| 190 |
+
#)
|
| 191 |
run_btn.click(
|
| 192 |
fn=lambda x: self.process(x),
|
| 193 |
inputs=file_output,
|
| 194 |
outputs=self.volume_renderer,
|
| 195 |
)
|
| 196 |
|
| 197 |
+
download_btn = gr.DownloadButton(
|
| 198 |
+
"Download the result as NIfTI",
|
| 199 |
+
visible=True,
|
| 200 |
+
variant="secondary",
|
| 201 |
+
# scale=1.0,
|
| 202 |
+
size="sm",
|
| 203 |
+
)
|
| 204 |
+
download_btn.click(
|
| 205 |
+
fn=self.download_prediction,
|
| 206 |
+
inputs=None,
|
| 207 |
+
outputs=download_btn,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
with gr.Row():
|
| 211 |
gr.Examples(
|
| 212 |
examples=[
|
|
|
|
| 226 |
)
|
| 227 |
|
| 228 |
with gr.Row():
|
| 229 |
+
with gr.Group(): #gr.Box():
|
| 230 |
with gr.Column():
|
| 231 |
# create dummy image to be replaced by loaded images
|
| 232 |
t = gr.AnnotatedImage(
|
| 233 |
visible=True, elem_id="model-2d"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 234 |
)
|
| 235 |
+
#.style(
|
| 236 |
+
# color_map={self.class_name: "#ffae00"},
|
| 237 |
+
# height=512,
|
| 238 |
+
# width=512,
|
| 239 |
+
#)
|
| 240 |
|
| 241 |
self.slider.input(
|
| 242 |
self.get_img_pred_pair,
|
|
|
|
| 246 |
|
| 247 |
self.slider.render()
|
| 248 |
|
| 249 |
+
with gr.Group(): #gr.Box():
|
| 250 |
self.volume_renderer.render()
|
| 251 |
|
| 252 |
# sharing app publicly -> share=True:
|
demo/src/inference.py
CHANGED
|
@@ -11,6 +11,7 @@ def run_model(
|
|
| 11 |
verbose: str = "info",
|
| 12 |
task: str = "CT_Airways",
|
| 13 |
name: str = "Airways",
|
|
|
|
| 14 |
):
|
| 15 |
if verbose == "debug":
|
| 16 |
logging.getLogger().setLevel(logging.DEBUG)
|
|
@@ -27,6 +28,9 @@ def run_model(
|
|
| 27 |
if os.path.exists("./result/"):
|
| 28 |
shutil.rmtree("./result/")
|
| 29 |
|
|
|
|
|
|
|
|
|
|
| 30 |
patient_directory = ""
|
| 31 |
output_path = ""
|
| 32 |
try:
|
|
@@ -84,7 +88,7 @@ def run_model(
|
|
| 84 |
+ "-t1gd_annotation-"
|
| 85 |
+ name
|
| 86 |
+ ".nii.gz",
|
| 87 |
-
|
| 88 |
)
|
| 89 |
# Clean-up
|
| 90 |
if os.path.exists(patient_directory):
|
|
|
|
| 11 |
verbose: str = "info",
|
| 12 |
task: str = "CT_Airways",
|
| 13 |
name: str = "Airways",
|
| 14 |
+
output_filename: str = None,
|
| 15 |
):
|
| 16 |
if verbose == "debug":
|
| 17 |
logging.getLogger().setLevel(logging.DEBUG)
|
|
|
|
| 28 |
if os.path.exists("./result/"):
|
| 29 |
shutil.rmtree("./result/")
|
| 30 |
|
| 31 |
+
if output_filename is None:
|
| 32 |
+
raise ValueError("Please, set output_filename.")
|
| 33 |
+
|
| 34 |
patient_directory = ""
|
| 35 |
output_path = ""
|
| 36 |
try:
|
|
|
|
| 88 |
+ "-t1gd_annotation-"
|
| 89 |
+ name
|
| 90 |
+ ".nii.gz",
|
| 91 |
+
output_filename,
|
| 92 |
)
|
| 93 |
# Clean-up
|
| 94 |
if os.path.exists(patient_directory):
|