dbouget commited on
Commit
b5d0029
·
1 Parent(s): 79725b7

Upgrade to gradio 5

Browse files
Files changed (5) hide show
  1. .gitignore +1 -0
  2. Dockerfile +5 -5
  3. demo/requirements.txt +2 -2
  4. demo/src/gui.py +100 -124
  5. demo/src/inference.py +36 -24
.gitignore CHANGED
@@ -13,3 +13,4 @@ venv/
13
  *.obj
14
  *.zip
15
  *.txt
 
 
13
  *.obj
14
  *.zip
15
  *.txt
16
+ *.idea/
Dockerfile CHANGED
@@ -1,6 +1,6 @@
1
  # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
  # you will also find guides on how best to write your Dockerfile
3
- FROM python:3.8-slim
4
 
5
  # set language, format and stuff
6
  ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
@@ -50,10 +50,10 @@ WORKDIR $HOME/app
50
  COPY --chown=user . $HOME/app
51
 
52
  # Download pretrained models
53
- RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-CT_Airways-ONNX-v12.zip" && \
54
- unzip "Raidionics-CT_Airways-ONNX-v12.zip" && mkdir -p resources/models/ && mv CT_Airways/ resources/models/CT_Airways/
55
- RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/1.2.0/Raidionics-CT_Lungs-ONNX-v12.zip" && \
56
- unzip "Raidionics-CT_Lungs-ONNX-v12.zip" && mv CT_Lungs/ resources/models/CT_Lungs/
57
 
58
  RUN rm -r *.zip
59
 
 
1
  # read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
2
  # you will also find guides on how best to write your Dockerfile
3
+ FROM python:3.10-slim
4
 
5
  # set language, format and stuff
6
  ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
 
50
  COPY --chown=user . $HOME/app
51
 
52
  # Download pretrained models
53
+ RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/v1.3.0-rc/Raidionics-CT_Airways-v13.zip" && \
54
+ unzip "Raidionics-CT_Airways-v13.zip" && mkdir -p resources/models/ && mv CT_Airways/ resources/models/CT_Airways/
55
+ RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/v1.3.0-rc/Raidionics-CT_Lungs-v13.zip" && \
56
+ unzip "Raidionics-CT_Lungs-v13.zip" && mv CT_Lungs/ resources/models/CT_Lungs/
57
 
58
  RUN rm -r *.zip
59
 
demo/requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- raidionicsrads@git+https://github.com/dbouget/raidionics_rads_lib
2
- gradio==4.29.0
 
1
+ raidionicsrads
2
+ gradio
demo/src/gui.py CHANGED
@@ -1,6 +1,8 @@
1
  import os
2
 
3
  import gradio as gr
 
 
4
 
5
  from .convert import nifti_to_obj
6
  from .css_style import css
@@ -22,48 +24,39 @@ class WebUI:
22
  cwd: str = "/home/user/app/",
23
  share: int = 1,
24
  ):
 
 
 
 
 
 
 
 
25
  # global states
26
  self.images = []
27
  self.pred_images = []
28
 
29
- # @TODO: This should be dynamically set based on chosen volume size
30
- self.nb_slider_items = 820
31
-
32
  self.model_name = model_name
33
  self.cwd = cwd
34
  self.share = share
35
 
36
- self.filename = None
37
- self.extension = None
38
-
39
- self.class_name = "airways" # default
40
  self.class_names = {
41
- "airways": "CT_Airways",
42
- "lungs": "CT_Lungs",
43
  }
44
 
45
  self.result_names = {
46
- "airways": "Airways",
47
- "lungs": "Lungs",
48
  }
49
 
50
- # define widgets not to be rendered immediantly, but later on
51
- self.slider = gr.Slider(
52
- minimum=1,
53
- maximum=self.nb_slider_items,
54
- value=1,
55
- step=1,
56
- label="Which 2D slice to show",
57
- )
58
  self.volume_renderer = gr.Model3D(
59
  clear_color=[0.0, 0.0, 0.0, 0.0],
60
  label="3D Model",
61
- show_label=True,
62
  visible=True,
63
  elem_id="model-3d",
64
- camera_position=[90, 180, 768],
65
  height=512,
66
  )
 
67
 
68
  def set_class_name(self, value):
69
  LOGGER.info(f"Changed task to: {value}")
@@ -79,75 +72,107 @@ class WebUI:
79
 
80
  def process(self, mesh_file_name):
81
  path = mesh_file_name.name
82
- curr = path.split("/")[-1]
83
- self.extension = ".".join(curr.split(".")[1:])
84
- self.filename = (
85
- curr.split(".")[0] + "-" + self.class_names[self.class_name]
86
- )
87
  run_model(
88
  path,
89
  model_path=os.path.join(self.cwd, "resources/models/"),
90
  task=self.class_names[self.class_name],
91
  name=self.result_names[self.class_name],
92
- output_filename=self.filename + "." + self.extension,
93
  )
94
  LOGGER.info("Converting prediction NIfTI to OBJ...")
95
- nifti_to_obj(path=self.filename + "." + self.extension)
96
 
97
  LOGGER.info("Loading CT to numpy...")
98
  self.images = load_ct_to_numpy(path)
99
 
100
  LOGGER.info("Loading prediction volume to numpy..")
101
- self.pred_images = load_pred_volume_to_numpy(
102
- self.filename + "." + self.extension
103
- )
104
 
105
- return "./prediction.obj"
 
 
 
 
 
 
 
106
 
107
- def download_prediction(self):
108
- if (self.filename is None) or (self.extension is None):
109
- LOGGER.error(
110
- "The prediction is not available or ready to download. Wait until the result is available in the 3D viewer."
111
- )
112
- raise ValueError("Run inference before downloading!")
113
- return self.filename + "." + self.extension
114
 
115
  def get_img_pred_pair(self, k):
116
- k = int(k)
117
- out = gr.AnnotatedImage(
118
- self.combine_ct_and_seg(self.images[k], self.pred_images[k]),
119
- visible=True,
120
- elem_id="model-2d",
121
- color_map={self.class_name: "#ffae00"},
122
- height=512,
123
- width=512,
124
- )
125
- return out
126
 
127
  def toggle_sidebar(self, state):
128
  state = not state
129
  return gr.update(visible=state), state
130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
  def run(self):
132
  with gr.Blocks(css=css) as demo:
133
  with gr.Row():
134
- with gr.Column(visible=True, scale=0.2) as sidebar_left:
135
  logs = gr.Textbox(
136
  placeholder="\n" * 16,
137
  label="Logs",
138
  info="Verbose from inference will be displayed below.",
139
- lines=36,
140
- max_lines=36,
141
  autoscroll=True,
142
  elem_id="logs",
143
  show_copy_button=True,
 
144
  container=True,
 
145
  )
146
- demo.load(read_logs, None, logs, every=1)
 
 
147
 
148
- with gr.Column():
149
  with gr.Row():
150
- with gr.Column(scale=1, min_width=150):
151
  sidebar_state = gr.State(True)
152
 
153
  btn_toggle_sidebar = gr.Button(
@@ -160,66 +185,30 @@ class WebUI:
160
  [sidebar_left, sidebar_state],
161
  )
162
 
163
- btn_clear_logs = gr.Button(
164
- "Clear logs", elem_id="logs-button"
165
- )
166
  btn_clear_logs.click(flush_logs, [], [])
167
 
168
- file_output = gr.File(
169
- file_count="single",
170
- elem_id="upload",
171
- scale=3,
172
- )
173
- file_output.upload(
174
- self.upload_file, file_output, file_output
175
- )
176
 
177
- model_selector = gr.Dropdown(
178
  list(self.class_names.keys()),
179
  label="Task",
180
  info="Which structure to segment.",
181
  multiselect=False,
182
- scale=1,
183
- )
184
- model_selector.input(
185
- fn=lambda x: self.set_class_name(x),
186
- inputs=model_selector,
187
- outputs=None,
188
  )
189
 
190
- with gr.Column(scale=1, min_width=150):
191
- run_btn = gr.Button(
192
- "Run analysis",
193
- variant="primary",
194
- elem_id="run-button",
195
- )
196
- run_btn.click(
197
- fn=lambda x: self.process(x),
198
- inputs=file_output,
199
- outputs=self.volume_renderer,
200
- )
201
-
202
- download_btn = gr.DownloadButton(
203
- "Download prediction",
204
- visible=True,
205
- variant="secondary",
206
- elem_id="download",
207
- )
208
- download_btn.click(
209
- fn=self.download_prediction,
210
- inputs=None,
211
- outputs=download_btn,
212
- )
213
 
214
  with gr.Row():
215
  gr.Examples(
216
  examples=[
217
  os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
218
  ],
219
- inputs=file_output,
220
- outputs=file_output,
221
  fn=self.upload_file,
222
- cache_examples=True,
223
  )
224
 
225
  gr.Markdown(
@@ -229,32 +218,19 @@ class WebUI:
229
  """
230
  )
231
 
232
- with gr.Row():
233
- with gr.Group():
234
- with gr.Column():
235
- # create dummy image to be replaced by loaded images
236
- t = gr.AnnotatedImage(
237
- visible=True,
238
- elem_id="model-2d",
239
- color_map={self.class_name: "#ffae00"},
240
- # height=512,
241
- # width=512,
242
- )
243
- self.slider.input(
244
- self.get_img_pred_pair,
245
- self.slider,
246
- t,
247
- )
248
-
249
- self.slider.render()
250
-
251
- with gr.Group(): # gr.Box():
252
- self.volume_renderer.render()
253
-
254
  # sharing app publicly -> share=True:
255
  # https://gradio.app/sharing-your-app/
256
  # inference times > 60 seconds -> need queue():
257
  # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
258
- demo.queue().launch(
259
- server_name="0.0.0.0", server_port=7860, share=self.share
260
- )
 
1
  import os
2
 
3
  import gradio as gr
4
+ from zipfile import ZipFile
5
+ from PIL import Image
6
 
7
  from .convert import nifti_to_obj
8
  from .css_style import css
 
24
  cwd: str = "/home/user/app/",
25
  share: int = 1,
26
  ):
27
+ self.file_output = None
28
+ self.model_selector = None
29
+ self.stripped_cb = None
30
+ self.registered_cb = None
31
+ self.run_btn = None
32
+ self.slider = None
33
+ self.download_file = None
34
+
35
  # global states
36
  self.images = []
37
  self.pred_images = []
38
 
 
 
 
39
  self.model_name = model_name
40
  self.cwd = cwd
41
  self.share = share
42
 
43
+ self.class_name = "Airways" # default
 
 
 
44
  self.class_names = {
45
+ "Airways": "CT_Airways",
 
46
  }
47
 
48
  self.result_names = {
49
+ "Airways": "Airways",
 
50
  }
51
 
 
 
 
 
 
 
 
 
52
  self.volume_renderer = gr.Model3D(
53
  clear_color=[0.0, 0.0, 0.0, 0.0],
54
  label="3D Model",
 
55
  visible=True,
56
  elem_id="model-3d",
 
57
  height=512,
58
  )
59
+ # self.volume_renderer = ShinyModel3D()
60
 
61
  def set_class_name(self, value):
62
  LOGGER.info(f"Changed task to: {value}")
 
72
 
73
  def process(self, mesh_file_name):
74
  path = mesh_file_name.name
 
 
 
 
 
75
  run_model(
76
  path,
77
  model_path=os.path.join(self.cwd, "resources/models/"),
78
  task=self.class_names[self.class_name],
79
  name=self.result_names[self.class_name],
 
80
  )
81
  LOGGER.info("Converting prediction NIfTI to OBJ...")
82
+ nifti_to_obj("prediction.nii.gz")
83
 
84
  LOGGER.info("Loading CT to numpy...")
85
  self.images = load_ct_to_numpy(path)
86
 
87
  LOGGER.info("Loading prediction volume to numpy..")
88
+ self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
 
 
89
 
90
+ slider = gr.Slider(
91
+ minimum=0,
92
+ maximum=len(self.images) - 1,
93
+ value=int(len(self.images) / 2),
94
+ step=1,
95
+ label="Which 2D slice to show",
96
+ interactive=True,
97
+ )
98
 
99
+ return "./prediction.obj", slider
 
 
 
 
 
 
100
 
101
  def get_img_pred_pair(self, k):
102
+ img = self.images[k]
103
+ img_pil = Image.fromarray(img)
104
+ seg_list = []
105
+ seg_list.append((self.pred_images[k], self.class_name))
106
+ return img_pil, seg_list
 
 
 
 
 
107
 
108
  def toggle_sidebar(self, state):
109
  state = not state
110
  return gr.update(visible=state), state
111
 
112
+ def package_results(self):
113
+ """Generates text files and zips them."""
114
+ output_dir = "temp_output"
115
+ os.makedirs(output_dir, exist_ok=True)
116
+
117
+ zip_filename = os.path.join(output_dir, "generated_files.zip")
118
+ with ZipFile(zip_filename, 'w') as zf:
119
+ zf.write("./prediction.nii.gz")
120
+
121
+ return zip_filename
122
+
123
+ def setup_interface_outputs(self):
124
+ with gr.Row():
125
+ with gr.Group():
126
+ with gr.Column(scale=2):
127
+ t = gr.AnnotatedImage(
128
+ visible=True,
129
+ elem_id="model-2d",
130
+ color_map={self.class_name: "#ffae00"},
131
+ height=512,
132
+ width=512,
133
+ )
134
+
135
+ self.slider = gr.Slider(
136
+ minimum=0,
137
+ maximum=1,
138
+ value=0,
139
+ step=1,
140
+ label="Which 2D slice to show",
141
+ interactive=True,
142
+ )
143
+
144
+ self.slider.change(fn=self.get_img_pred_pair, inputs=self.slider, outputs=t)
145
+
146
+ with gr.Group():
147
+ self.volume_renderer.render()
148
+ self.download_btn = gr.DownloadButton(label="Download results", visible=False)
149
+ self.download_file = gr.File(label="Download Zip", interactive=True, visible=False)
150
+
151
+
152
  def run(self):
153
  with gr.Blocks(css=css) as demo:
154
  with gr.Row():
155
+ with gr.Column(scale=1, visible=True) as sidebar_left:
156
  logs = gr.Textbox(
157
  placeholder="\n" * 16,
158
  label="Logs",
159
  info="Verbose from inference will be displayed below.",
160
+ lines=38,
161
+ max_lines=38,
162
  autoscroll=True,
163
  elem_id="logs",
164
  show_copy_button=True,
165
+ # scroll_to_output=False,
166
  container=True,
167
+ # line_breaks=True,
168
  )
169
+ timer = gr.Timer(value=1, active=True)
170
+ timer.tick(fn=read_logs, inputs=None, outputs=logs)
171
+ # demo.load(read_logs, None, logs, every=0.5)
172
 
173
+ with gr.Column(scale=2):
174
  with gr.Row():
175
+ with gr.Column(min_width=150):
176
  sidebar_state = gr.State(True)
177
 
178
  btn_toggle_sidebar = gr.Button(
 
185
  [sidebar_left, sidebar_state],
186
  )
187
 
188
+ btn_clear_logs = gr.Button("Clear logs", elem_id="logs-button")
 
 
189
  btn_clear_logs.click(flush_logs, [], [])
190
 
191
+ self.file_output = gr.File(file_count="single", elem_id="upload")
 
 
 
 
 
 
 
192
 
193
+ self.model_selector = gr.Dropdown(
194
  list(self.class_names.keys()),
195
  label="Task",
196
  info="Which structure to segment.",
197
  multiselect=False,
 
 
 
 
 
 
198
  )
199
 
200
+ with gr.Column(min_width=150):
201
+ self.run_btn = gr.Button("Run segmentation", variant="primary", elem_id="run-button")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
202
 
203
  with gr.Row():
204
  gr.Examples(
205
  examples=[
206
  os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
207
  ],
208
+ inputs=self.file_output,
209
+ outputs=self.file_output,
210
  fn=self.upload_file,
211
+ cache_examples=False,
212
  )
213
 
214
  gr.Markdown(
 
218
  """
219
  )
220
 
221
+ self.setup_interface_outputs()
222
+
223
+ # Define the signals/slots
224
+ self.file_output.upload(self.upload_file, self.file_output, self.file_output)
225
+ self.model_selector.input(fn=lambda x: self.set_class_name(x), inputs=self.model_selector, outputs=None)
226
+ self.run_btn.click(fn=self.process, inputs=[self.file_output],
227
+ outputs=[self.volume_renderer, self.slider]).then(fn=lambda:
228
+ gr.DownloadButton(visible=True), inputs=None, outputs=self.download_btn)
229
+ self.download_btn.click(fn=self.package_results, inputs=[], outputs=self.download_file).then(fn=lambda
230
+ file_path: gr.File(label="Download Zip", visible=True, value=file_path), inputs=self.download_file,
231
+ outputs=self.download_file)
 
 
 
 
 
 
 
 
 
 
 
232
  # sharing app publicly -> share=True:
233
  # https://gradio.app/sharing-your-app/
234
  # inference times > 60 seconds -> need queue():
235
  # https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
236
+ demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=self.share)
 
 
demo/src/inference.py CHANGED
@@ -3,6 +3,8 @@ import logging
3
  import os
4
  import shutil
5
  import traceback
 
 
6
 
7
 
8
  def run_model(
@@ -11,7 +13,6 @@ def run_model(
11
  verbose: str = "info",
12
  task: str = "CT_Airways",
13
  name: str = "Airways",
14
- output_filename: str = None,
15
  ):
16
  if verbose == "debug":
17
  logging.getLogger().setLevel(logging.DEBUG)
@@ -28,9 +29,6 @@ def run_model(
28
  if os.path.exists("./result/"):
29
  shutil.rmtree("./result/")
30
 
31
- if output_filename is None:
32
- raise ValueError("Please, set output_filename.")
33
-
34
  patient_directory = ""
35
  output_path = ""
36
  try:
@@ -59,37 +57,51 @@ def run_model(
59
  rads_config.set("System", "input_folder", patient_directory)
60
  rads_config.set("System", "output_folder", output_path)
61
  rads_config.set("System", "model_folder", model_path)
62
- rads_config.set(
63
- "System",
64
- "pipeline_filename",
65
- os.path.join(model_path, task, "pipeline.json"),
66
- )
67
  rads_config.add_section("Runtime")
68
- rads_config.set(
69
- "Runtime", "reconstruction_method", "thresholding"
70
- ) # thresholding, probabilities
71
  rads_config.set("Runtime", "reconstruction_order", "resample_first")
72
  rads_config.set("Runtime", "use_preprocessed_data", "False")
73
 
74
  with open("rads_config.ini", "w") as f:
75
  rads_config.write(f)
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  # finally, run inference
78
  from raidionicsrads.compute import run_rads
79
-
80
  run_rads(config_filename="rads_config.ini")
81
 
82
- # rename and move final result
83
- os.rename(
84
- "./result/prediction-"
85
- + splits[0]
86
- + "/T0/"
87
- + splits[0]
88
- + "-t1gd_annotation-"
89
- + name
90
- + ".nii.gz",
91
- output_filename,
92
- )
93
  # Clean-up
94
  if os.path.exists(patient_directory):
95
  shutil.rmtree(patient_directory)
 
3
  import os
4
  import shutil
5
  import traceback
6
+ import json
7
+ import fnmatch
8
 
9
 
10
  def run_model(
 
13
  verbose: str = "info",
14
  task: str = "CT_Airways",
15
  name: str = "Airways",
 
16
  ):
17
  if verbose == "debug":
18
  logging.getLogger().setLevel(logging.DEBUG)
 
29
  if os.path.exists("./result/"):
30
  shutil.rmtree("./result/")
31
 
 
 
 
32
  patient_directory = ""
33
  output_path = ""
34
  try:
 
57
  rads_config.set("System", "input_folder", patient_directory)
58
  rads_config.set("System", "output_folder", output_path)
59
  rads_config.set("System", "model_folder", model_path)
60
+ rads_config.set('System', 'pipeline_filename', os.path.join(output_path,
61
+ 'test_pipeline.json'))
 
 
 
62
  rads_config.add_section("Runtime")
63
+ rads_config.set("Runtime", "reconstruction_method", "thresholding") # thresholding, probabilities
 
 
64
  rads_config.set("Runtime", "reconstruction_order", "resample_first")
65
  rads_config.set("Runtime", "use_preprocessed_data", "False")
66
 
67
  with open("rads_config.ini", "w") as f:
68
  rads_config.write(f)
69
 
70
+ pip = {}
71
+ step_index = 1
72
+ pip_num = str(step_index)
73
+ pip[pip_num] = {}
74
+ pip[pip_num]["task"] = "Classification"
75
+ pip[pip_num]["inputs"] = {} # Empty input means running it on all existing data for the patient
76
+ pip[pip_num]["target"] = ["MRSequence"]
77
+ pip[pip_num]["model"] = "MRI_SequenceClassifier"
78
+ pip[pip_num]["description"] = "Classification of the MRI sequence type for all input scans."
79
+
80
+ step_index = step_index + 1
81
+ pip_num = str(step_index)
82
+ pip[pip_num] = {}
83
+ pip[pip_num]["task"] = 'Model selection'
84
+ pip[pip_num]["model"] = task
85
+ pip[pip_num]["timestamp"] = 0
86
+ pip[pip_num]["format"] = "thresholding"
87
+ pip[pip_num]["description"] = f"Identifying the best {task} segmentation model for existing inputs"
88
+
89
+ with open(os.path.join(output_path, 'test_pipeline.json'), 'w', newline='\n') as outfile:
90
+ json.dump(pip, outfile, indent=4, sort_keys=True)
91
+
92
  # finally, run inference
93
  from raidionicsrads.compute import run_rads
 
94
  run_rads(config_filename="rads_config.ini")
95
 
96
+ logging.info(f"Looking for the following pattern: {task}")
97
+ patterns = [f"*-{name}.*"]
98
+ existing_files = os.listdir(os.path.join(output_path, "T0"))
99
+ logging.info(f"Existing files: {existing_files}")
100
+ fileName = str(os.path.join(output_path, "T0",
101
+ [x for x in existing_files if
102
+ any(fnmatch.fnmatch(x, pattern) for pattern in patterns)][0]))
103
+ os.rename(src=fileName, dst="./prediction.nii.gz")
104
+
 
 
105
  # Clean-up
106
  if os.path.exists(patient_directory):
107
  shutil.rmtree(patient_directory)