Spaces:
Running
Running
dbouget
commited on
Commit
·
b5d0029
1
Parent(s):
79725b7
Upgrade to gradio 5
Browse files- .gitignore +1 -0
- Dockerfile +5 -5
- demo/requirements.txt +2 -2
- demo/src/gui.py +100 -124
- demo/src/inference.py +36 -24
.gitignore
CHANGED
@@ -13,3 +13,4 @@ venv/
|
|
13 |
*.obj
|
14 |
*.zip
|
15 |
*.txt
|
|
|
|
13 |
*.obj
|
14 |
*.zip
|
15 |
*.txt
|
16 |
+
*.idea/
|
Dockerfile
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
-
FROM python:3.
|
4 |
|
5 |
# set language, format and stuff
|
6 |
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
@@ -50,10 +50,10 @@ WORKDIR $HOME/app
|
|
50 |
COPY --chown=user . $HOME/app
|
51 |
|
52 |
# Download pretrained models
|
53 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/
|
54 |
-
unzip "Raidionics-CT_Airways-
|
55 |
-
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/
|
56 |
-
unzip "Raidionics-CT_Lungs-
|
57 |
|
58 |
RUN rm -r *.zip
|
59 |
|
|
|
1 |
# read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
2 |
# you will also find guides on how best to write your Dockerfile
|
3 |
+
FROM python:3.10-slim
|
4 |
|
5 |
# set language, format and stuff
|
6 |
ENV LANG=C.UTF-8 LC_ALL=C.UTF-8
|
|
|
50 |
COPY --chown=user . $HOME/app
|
51 |
|
52 |
# Download pretrained models
|
53 |
+
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/v1.3.0-rc/Raidionics-CT_Airways-v13.zip" && \
|
54 |
+
unzip "Raidionics-CT_Airways-v13.zip" && mkdir -p resources/models/ && mv CT_Airways/ resources/models/CT_Airways/
|
55 |
+
RUN wget "https://github.com/raidionics/Raidionics-models/releases/download/v1.3.0-rc/Raidionics-CT_Lungs-v13.zip" && \
|
56 |
+
unzip "Raidionics-CT_Lungs-v13.zip" && mv CT_Lungs/ resources/models/CT_Lungs/
|
57 |
|
58 |
RUN rm -r *.zip
|
59 |
|
demo/requirements.txt
CHANGED
@@ -1,2 +1,2 @@
|
|
1 |
-
raidionicsrads
|
2 |
-
gradio
|
|
|
1 |
+
raidionicsrads
|
2 |
+
gradio
|
demo/src/gui.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
|
|
|
|
4 |
|
5 |
from .convert import nifti_to_obj
|
6 |
from .css_style import css
|
@@ -22,48 +24,39 @@ class WebUI:
|
|
22 |
cwd: str = "/home/user/app/",
|
23 |
share: int = 1,
|
24 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# global states
|
26 |
self.images = []
|
27 |
self.pred_images = []
|
28 |
|
29 |
-
# @TODO: This should be dynamically set based on chosen volume size
|
30 |
-
self.nb_slider_items = 820
|
31 |
-
|
32 |
self.model_name = model_name
|
33 |
self.cwd = cwd
|
34 |
self.share = share
|
35 |
|
36 |
-
self.
|
37 |
-
self.extension = None
|
38 |
-
|
39 |
-
self.class_name = "airways" # default
|
40 |
self.class_names = {
|
41 |
-
"
|
42 |
-
"lungs": "CT_Lungs",
|
43 |
}
|
44 |
|
45 |
self.result_names = {
|
46 |
-
"
|
47 |
-
"lungs": "Lungs",
|
48 |
}
|
49 |
|
50 |
-
# define widgets not to be rendered immediantly, but later on
|
51 |
-
self.slider = gr.Slider(
|
52 |
-
minimum=1,
|
53 |
-
maximum=self.nb_slider_items,
|
54 |
-
value=1,
|
55 |
-
step=1,
|
56 |
-
label="Which 2D slice to show",
|
57 |
-
)
|
58 |
self.volume_renderer = gr.Model3D(
|
59 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
60 |
label="3D Model",
|
61 |
-
show_label=True,
|
62 |
visible=True,
|
63 |
elem_id="model-3d",
|
64 |
-
camera_position=[90, 180, 768],
|
65 |
height=512,
|
66 |
)
|
|
|
67 |
|
68 |
def set_class_name(self, value):
|
69 |
LOGGER.info(f"Changed task to: {value}")
|
@@ -79,75 +72,107 @@ class WebUI:
|
|
79 |
|
80 |
def process(self, mesh_file_name):
|
81 |
path = mesh_file_name.name
|
82 |
-
curr = path.split("/")[-1]
|
83 |
-
self.extension = ".".join(curr.split(".")[1:])
|
84 |
-
self.filename = (
|
85 |
-
curr.split(".")[0] + "-" + self.class_names[self.class_name]
|
86 |
-
)
|
87 |
run_model(
|
88 |
path,
|
89 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
90 |
task=self.class_names[self.class_name],
|
91 |
name=self.result_names[self.class_name],
|
92 |
-
output_filename=self.filename + "." + self.extension,
|
93 |
)
|
94 |
LOGGER.info("Converting prediction NIfTI to OBJ...")
|
95 |
-
nifti_to_obj(
|
96 |
|
97 |
LOGGER.info("Loading CT to numpy...")
|
98 |
self.images = load_ct_to_numpy(path)
|
99 |
|
100 |
LOGGER.info("Loading prediction volume to numpy..")
|
101 |
-
self.pred_images = load_pred_volume_to_numpy(
|
102 |
-
self.filename + "." + self.extension
|
103 |
-
)
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
-
|
108 |
-
if (self.filename is None) or (self.extension is None):
|
109 |
-
LOGGER.error(
|
110 |
-
"The prediction is not available or ready to download. Wait until the result is available in the 3D viewer."
|
111 |
-
)
|
112 |
-
raise ValueError("Run inference before downloading!")
|
113 |
-
return self.filename + "." + self.extension
|
114 |
|
115 |
def get_img_pred_pair(self, k):
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
color_map={self.class_name: "#ffae00"},
|
122 |
-
height=512,
|
123 |
-
width=512,
|
124 |
-
)
|
125 |
-
return out
|
126 |
|
127 |
def toggle_sidebar(self, state):
|
128 |
state = not state
|
129 |
return gr.update(visible=state), state
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
def run(self):
|
132 |
with gr.Blocks(css=css) as demo:
|
133 |
with gr.Row():
|
134 |
-
with gr.Column(
|
135 |
logs = gr.Textbox(
|
136 |
placeholder="\n" * 16,
|
137 |
label="Logs",
|
138 |
info="Verbose from inference will be displayed below.",
|
139 |
-
lines=
|
140 |
-
max_lines=
|
141 |
autoscroll=True,
|
142 |
elem_id="logs",
|
143 |
show_copy_button=True,
|
|
|
144 |
container=True,
|
|
|
145 |
)
|
146 |
-
|
|
|
|
|
147 |
|
148 |
-
with gr.Column():
|
149 |
with gr.Row():
|
150 |
-
with gr.Column(
|
151 |
sidebar_state = gr.State(True)
|
152 |
|
153 |
btn_toggle_sidebar = gr.Button(
|
@@ -160,66 +185,30 @@ class WebUI:
|
|
160 |
[sidebar_left, sidebar_state],
|
161 |
)
|
162 |
|
163 |
-
btn_clear_logs = gr.Button(
|
164 |
-
"Clear logs", elem_id="logs-button"
|
165 |
-
)
|
166 |
btn_clear_logs.click(flush_logs, [], [])
|
167 |
|
168 |
-
file_output = gr.File(
|
169 |
-
file_count="single",
|
170 |
-
elem_id="upload",
|
171 |
-
scale=3,
|
172 |
-
)
|
173 |
-
file_output.upload(
|
174 |
-
self.upload_file, file_output, file_output
|
175 |
-
)
|
176 |
|
177 |
-
model_selector = gr.Dropdown(
|
178 |
list(self.class_names.keys()),
|
179 |
label="Task",
|
180 |
info="Which structure to segment.",
|
181 |
multiselect=False,
|
182 |
-
scale=1,
|
183 |
-
)
|
184 |
-
model_selector.input(
|
185 |
-
fn=lambda x: self.set_class_name(x),
|
186 |
-
inputs=model_selector,
|
187 |
-
outputs=None,
|
188 |
)
|
189 |
|
190 |
-
with gr.Column(
|
191 |
-
run_btn = gr.Button(
|
192 |
-
"Run analysis",
|
193 |
-
variant="primary",
|
194 |
-
elem_id="run-button",
|
195 |
-
)
|
196 |
-
run_btn.click(
|
197 |
-
fn=lambda x: self.process(x),
|
198 |
-
inputs=file_output,
|
199 |
-
outputs=self.volume_renderer,
|
200 |
-
)
|
201 |
-
|
202 |
-
download_btn = gr.DownloadButton(
|
203 |
-
"Download prediction",
|
204 |
-
visible=True,
|
205 |
-
variant="secondary",
|
206 |
-
elem_id="download",
|
207 |
-
)
|
208 |
-
download_btn.click(
|
209 |
-
fn=self.download_prediction,
|
210 |
-
inputs=None,
|
211 |
-
outputs=download_btn,
|
212 |
-
)
|
213 |
|
214 |
with gr.Row():
|
215 |
gr.Examples(
|
216 |
examples=[
|
217 |
os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
|
218 |
],
|
219 |
-
inputs=file_output,
|
220 |
-
outputs=file_output,
|
221 |
fn=self.upload_file,
|
222 |
-
cache_examples=
|
223 |
)
|
224 |
|
225 |
gr.Markdown(
|
@@ -229,32 +218,19 @@ class WebUI:
|
|
229 |
"""
|
230 |
)
|
231 |
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
self.slider.input(
|
244 |
-
self.get_img_pred_pair,
|
245 |
-
self.slider,
|
246 |
-
t,
|
247 |
-
)
|
248 |
-
|
249 |
-
self.slider.render()
|
250 |
-
|
251 |
-
with gr.Group(): # gr.Box():
|
252 |
-
self.volume_renderer.render()
|
253 |
-
|
254 |
# sharing app publicly -> share=True:
|
255 |
# https://gradio.app/sharing-your-app/
|
256 |
# inference times > 60 seconds -> need queue():
|
257 |
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
258 |
-
demo.queue().launch(
|
259 |
-
server_name="0.0.0.0", server_port=7860, share=self.share
|
260 |
-
)
|
|
|
1 |
import os
|
2 |
|
3 |
import gradio as gr
|
4 |
+
from zipfile import ZipFile
|
5 |
+
from PIL import Image
|
6 |
|
7 |
from .convert import nifti_to_obj
|
8 |
from .css_style import css
|
|
|
24 |
cwd: str = "/home/user/app/",
|
25 |
share: int = 1,
|
26 |
):
|
27 |
+
self.file_output = None
|
28 |
+
self.model_selector = None
|
29 |
+
self.stripped_cb = None
|
30 |
+
self.registered_cb = None
|
31 |
+
self.run_btn = None
|
32 |
+
self.slider = None
|
33 |
+
self.download_file = None
|
34 |
+
|
35 |
# global states
|
36 |
self.images = []
|
37 |
self.pred_images = []
|
38 |
|
|
|
|
|
|
|
39 |
self.model_name = model_name
|
40 |
self.cwd = cwd
|
41 |
self.share = share
|
42 |
|
43 |
+
self.class_name = "Airways" # default
|
|
|
|
|
|
|
44 |
self.class_names = {
|
45 |
+
"Airways": "CT_Airways",
|
|
|
46 |
}
|
47 |
|
48 |
self.result_names = {
|
49 |
+
"Airways": "Airways",
|
|
|
50 |
}
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
self.volume_renderer = gr.Model3D(
|
53 |
clear_color=[0.0, 0.0, 0.0, 0.0],
|
54 |
label="3D Model",
|
|
|
55 |
visible=True,
|
56 |
elem_id="model-3d",
|
|
|
57 |
height=512,
|
58 |
)
|
59 |
+
# self.volume_renderer = ShinyModel3D()
|
60 |
|
61 |
def set_class_name(self, value):
|
62 |
LOGGER.info(f"Changed task to: {value}")
|
|
|
72 |
|
73 |
def process(self, mesh_file_name):
|
74 |
path = mesh_file_name.name
|
|
|
|
|
|
|
|
|
|
|
75 |
run_model(
|
76 |
path,
|
77 |
model_path=os.path.join(self.cwd, "resources/models/"),
|
78 |
task=self.class_names[self.class_name],
|
79 |
name=self.result_names[self.class_name],
|
|
|
80 |
)
|
81 |
LOGGER.info("Converting prediction NIfTI to OBJ...")
|
82 |
+
nifti_to_obj("prediction.nii.gz")
|
83 |
|
84 |
LOGGER.info("Loading CT to numpy...")
|
85 |
self.images = load_ct_to_numpy(path)
|
86 |
|
87 |
LOGGER.info("Loading prediction volume to numpy..")
|
88 |
+
self.pred_images = load_pred_volume_to_numpy("./prediction.nii.gz")
|
|
|
|
|
89 |
|
90 |
+
slider = gr.Slider(
|
91 |
+
minimum=0,
|
92 |
+
maximum=len(self.images) - 1,
|
93 |
+
value=int(len(self.images) / 2),
|
94 |
+
step=1,
|
95 |
+
label="Which 2D slice to show",
|
96 |
+
interactive=True,
|
97 |
+
)
|
98 |
|
99 |
+
return "./prediction.obj", slider
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
def get_img_pred_pair(self, k):
|
102 |
+
img = self.images[k]
|
103 |
+
img_pil = Image.fromarray(img)
|
104 |
+
seg_list = []
|
105 |
+
seg_list.append((self.pred_images[k], self.class_name))
|
106 |
+
return img_pil, seg_list
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
def toggle_sidebar(self, state):
|
109 |
state = not state
|
110 |
return gr.update(visible=state), state
|
111 |
|
112 |
+
def package_results(self):
|
113 |
+
"""Generates text files and zips them."""
|
114 |
+
output_dir = "temp_output"
|
115 |
+
os.makedirs(output_dir, exist_ok=True)
|
116 |
+
|
117 |
+
zip_filename = os.path.join(output_dir, "generated_files.zip")
|
118 |
+
with ZipFile(zip_filename, 'w') as zf:
|
119 |
+
zf.write("./prediction.nii.gz")
|
120 |
+
|
121 |
+
return zip_filename
|
122 |
+
|
123 |
+
def setup_interface_outputs(self):
|
124 |
+
with gr.Row():
|
125 |
+
with gr.Group():
|
126 |
+
with gr.Column(scale=2):
|
127 |
+
t = gr.AnnotatedImage(
|
128 |
+
visible=True,
|
129 |
+
elem_id="model-2d",
|
130 |
+
color_map={self.class_name: "#ffae00"},
|
131 |
+
height=512,
|
132 |
+
width=512,
|
133 |
+
)
|
134 |
+
|
135 |
+
self.slider = gr.Slider(
|
136 |
+
minimum=0,
|
137 |
+
maximum=1,
|
138 |
+
value=0,
|
139 |
+
step=1,
|
140 |
+
label="Which 2D slice to show",
|
141 |
+
interactive=True,
|
142 |
+
)
|
143 |
+
|
144 |
+
self.slider.change(fn=self.get_img_pred_pair, inputs=self.slider, outputs=t)
|
145 |
+
|
146 |
+
with gr.Group():
|
147 |
+
self.volume_renderer.render()
|
148 |
+
self.download_btn = gr.DownloadButton(label="Download results", visible=False)
|
149 |
+
self.download_file = gr.File(label="Download Zip", interactive=True, visible=False)
|
150 |
+
|
151 |
+
|
152 |
def run(self):
|
153 |
with gr.Blocks(css=css) as demo:
|
154 |
with gr.Row():
|
155 |
+
with gr.Column(scale=1, visible=True) as sidebar_left:
|
156 |
logs = gr.Textbox(
|
157 |
placeholder="\n" * 16,
|
158 |
label="Logs",
|
159 |
info="Verbose from inference will be displayed below.",
|
160 |
+
lines=38,
|
161 |
+
max_lines=38,
|
162 |
autoscroll=True,
|
163 |
elem_id="logs",
|
164 |
show_copy_button=True,
|
165 |
+
# scroll_to_output=False,
|
166 |
container=True,
|
167 |
+
# line_breaks=True,
|
168 |
)
|
169 |
+
timer = gr.Timer(value=1, active=True)
|
170 |
+
timer.tick(fn=read_logs, inputs=None, outputs=logs)
|
171 |
+
# demo.load(read_logs, None, logs, every=0.5)
|
172 |
|
173 |
+
with gr.Column(scale=2):
|
174 |
with gr.Row():
|
175 |
+
with gr.Column(min_width=150):
|
176 |
sidebar_state = gr.State(True)
|
177 |
|
178 |
btn_toggle_sidebar = gr.Button(
|
|
|
185 |
[sidebar_left, sidebar_state],
|
186 |
)
|
187 |
|
188 |
+
btn_clear_logs = gr.Button("Clear logs", elem_id="logs-button")
|
|
|
|
|
189 |
btn_clear_logs.click(flush_logs, [], [])
|
190 |
|
191 |
+
self.file_output = gr.File(file_count="single", elem_id="upload")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
|
193 |
+
self.model_selector = gr.Dropdown(
|
194 |
list(self.class_names.keys()),
|
195 |
label="Task",
|
196 |
info="Which structure to segment.",
|
197 |
multiselect=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
)
|
199 |
|
200 |
+
with gr.Column(min_width=150):
|
201 |
+
self.run_btn = gr.Button("Run segmentation", variant="primary", elem_id="run-button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
202 |
|
203 |
with gr.Row():
|
204 |
gr.Examples(
|
205 |
examples=[
|
206 |
os.path.join(self.cwd, "test_thorax_CT.nii.gz"),
|
207 |
],
|
208 |
+
inputs=self.file_output,
|
209 |
+
outputs=self.file_output,
|
210 |
fn=self.upload_file,
|
211 |
+
cache_examples=False,
|
212 |
)
|
213 |
|
214 |
gr.Markdown(
|
|
|
218 |
"""
|
219 |
)
|
220 |
|
221 |
+
self.setup_interface_outputs()
|
222 |
+
|
223 |
+
# Define the signals/slots
|
224 |
+
self.file_output.upload(self.upload_file, self.file_output, self.file_output)
|
225 |
+
self.model_selector.input(fn=lambda x: self.set_class_name(x), inputs=self.model_selector, outputs=None)
|
226 |
+
self.run_btn.click(fn=self.process, inputs=[self.file_output],
|
227 |
+
outputs=[self.volume_renderer, self.slider]).then(fn=lambda:
|
228 |
+
gr.DownloadButton(visible=True), inputs=None, outputs=self.download_btn)
|
229 |
+
self.download_btn.click(fn=self.package_results, inputs=[], outputs=self.download_file).then(fn=lambda
|
230 |
+
file_path: gr.File(label="Download Zip", visible=True, value=file_path), inputs=self.download_file,
|
231 |
+
outputs=self.download_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
232 |
# sharing app publicly -> share=True:
|
233 |
# https://gradio.app/sharing-your-app/
|
234 |
# inference times > 60 seconds -> need queue():
|
235 |
# https://github.com/tloen/alpaca-lora/issues/60#issuecomment-1510006062
|
236 |
+
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=self.share)
|
|
|
|
demo/src/inference.py
CHANGED
@@ -3,6 +3,8 @@ import logging
|
|
3 |
import os
|
4 |
import shutil
|
5 |
import traceback
|
|
|
|
|
6 |
|
7 |
|
8 |
def run_model(
|
@@ -11,7 +13,6 @@ def run_model(
|
|
11 |
verbose: str = "info",
|
12 |
task: str = "CT_Airways",
|
13 |
name: str = "Airways",
|
14 |
-
output_filename: str = None,
|
15 |
):
|
16 |
if verbose == "debug":
|
17 |
logging.getLogger().setLevel(logging.DEBUG)
|
@@ -28,9 +29,6 @@ def run_model(
|
|
28 |
if os.path.exists("./result/"):
|
29 |
shutil.rmtree("./result/")
|
30 |
|
31 |
-
if output_filename is None:
|
32 |
-
raise ValueError("Please, set output_filename.")
|
33 |
-
|
34 |
patient_directory = ""
|
35 |
output_path = ""
|
36 |
try:
|
@@ -59,37 +57,51 @@ def run_model(
|
|
59 |
rads_config.set("System", "input_folder", patient_directory)
|
60 |
rads_config.set("System", "output_folder", output_path)
|
61 |
rads_config.set("System", "model_folder", model_path)
|
62 |
-
rads_config.set(
|
63 |
-
|
64 |
-
"pipeline_filename",
|
65 |
-
os.path.join(model_path, task, "pipeline.json"),
|
66 |
-
)
|
67 |
rads_config.add_section("Runtime")
|
68 |
-
rads_config.set(
|
69 |
-
"Runtime", "reconstruction_method", "thresholding"
|
70 |
-
) # thresholding, probabilities
|
71 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
72 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
73 |
|
74 |
with open("rads_config.ini", "w") as f:
|
75 |
rads_config.write(f)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
# finally, run inference
|
78 |
from raidionicsrads.compute import run_rads
|
79 |
-
|
80 |
run_rads(config_filename="rads_config.ini")
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
output_filename,
|
92 |
-
)
|
93 |
# Clean-up
|
94 |
if os.path.exists(patient_directory):
|
95 |
shutil.rmtree(patient_directory)
|
|
|
3 |
import os
|
4 |
import shutil
|
5 |
import traceback
|
6 |
+
import json
|
7 |
+
import fnmatch
|
8 |
|
9 |
|
10 |
def run_model(
|
|
|
13 |
verbose: str = "info",
|
14 |
task: str = "CT_Airways",
|
15 |
name: str = "Airways",
|
|
|
16 |
):
|
17 |
if verbose == "debug":
|
18 |
logging.getLogger().setLevel(logging.DEBUG)
|
|
|
29 |
if os.path.exists("./result/"):
|
30 |
shutil.rmtree("./result/")
|
31 |
|
|
|
|
|
|
|
32 |
patient_directory = ""
|
33 |
output_path = ""
|
34 |
try:
|
|
|
57 |
rads_config.set("System", "input_folder", patient_directory)
|
58 |
rads_config.set("System", "output_folder", output_path)
|
59 |
rads_config.set("System", "model_folder", model_path)
|
60 |
+
rads_config.set('System', 'pipeline_filename', os.path.join(output_path,
|
61 |
+
'test_pipeline.json'))
|
|
|
|
|
|
|
62 |
rads_config.add_section("Runtime")
|
63 |
+
rads_config.set("Runtime", "reconstruction_method", "thresholding") # thresholding, probabilities
|
|
|
|
|
64 |
rads_config.set("Runtime", "reconstruction_order", "resample_first")
|
65 |
rads_config.set("Runtime", "use_preprocessed_data", "False")
|
66 |
|
67 |
with open("rads_config.ini", "w") as f:
|
68 |
rads_config.write(f)
|
69 |
|
70 |
+
pip = {}
|
71 |
+
step_index = 1
|
72 |
+
pip_num = str(step_index)
|
73 |
+
pip[pip_num] = {}
|
74 |
+
pip[pip_num]["task"] = "Classification"
|
75 |
+
pip[pip_num]["inputs"] = {} # Empty input means running it on all existing data for the patient
|
76 |
+
pip[pip_num]["target"] = ["MRSequence"]
|
77 |
+
pip[pip_num]["model"] = "MRI_SequenceClassifier"
|
78 |
+
pip[pip_num]["description"] = "Classification of the MRI sequence type for all input scans."
|
79 |
+
|
80 |
+
step_index = step_index + 1
|
81 |
+
pip_num = str(step_index)
|
82 |
+
pip[pip_num] = {}
|
83 |
+
pip[pip_num]["task"] = 'Model selection'
|
84 |
+
pip[pip_num]["model"] = task
|
85 |
+
pip[pip_num]["timestamp"] = 0
|
86 |
+
pip[pip_num]["format"] = "thresholding"
|
87 |
+
pip[pip_num]["description"] = f"Identifying the best {task} segmentation model for existing inputs"
|
88 |
+
|
89 |
+
with open(os.path.join(output_path, 'test_pipeline.json'), 'w', newline='\n') as outfile:
|
90 |
+
json.dump(pip, outfile, indent=4, sort_keys=True)
|
91 |
+
|
92 |
# finally, run inference
|
93 |
from raidionicsrads.compute import run_rads
|
|
|
94 |
run_rads(config_filename="rads_config.ini")
|
95 |
|
96 |
+
logging.info(f"Looking for the following pattern: {task}")
|
97 |
+
patterns = [f"*-{name}.*"]
|
98 |
+
existing_files = os.listdir(os.path.join(output_path, "T0"))
|
99 |
+
logging.info(f"Existing files: {existing_files}")
|
100 |
+
fileName = str(os.path.join(output_path, "T0",
|
101 |
+
[x for x in existing_files if
|
102 |
+
any(fnmatch.fnmatch(x, pattern) for pattern in patterns)][0]))
|
103 |
+
os.rename(src=fileName, dst="./prediction.nii.gz")
|
104 |
+
|
|
|
|
|
105 |
# Clean-up
|
106 |
if os.path.exists(patient_directory):
|
107 |
shutil.rmtree(patient_directory)
|