File size: 4,784 Bytes
abcdc69
 
 
 
 
fbf438c
55b76ac
abcdc69
36e06f1
c8128c2
3c9287e
36e06f1
c61a50f
36e06f1
 
c61a50f
36e06f1
abcdc69
 
 
 
 
 
658a6fd
 
 
55b76ac
abcdc69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bddd88
36e06f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abcdc69
 
 
 
 
 
 
8bddd88
abcdc69
 
 
 
 
 
 
7ce07b6
 
 
 
 
55b76ac
c8128c2
55b76ac
 
 
c8128c2
 
cfcd1f4
c8128c2
 
 
 
 
 
 
 
 
 
 
 
cfcd1f4
 
 
 
 
 
 
 
 
 
55b76ac
abcdc69
658a6fd
abcdc69
 
22f2eb7
 
abcdc69
f743c94
55b76ac
658a6fd
 
 
 
 
 
 
 
c602ea4
658a6fd
 
 
 
 
 
 
 
 
abcdc69
3206a17
 
 
 
 
835a80e
abcdc69
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import gradio as gr
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoProcessor,
    AutoModelForDocumentQuestionAnswering,
    pipeline,
)
import torch
import torchaudio

processor = AutoProcessor.from_pretrained(
    "MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
)
model = AutoModelForDocumentQuestionAnswering.from_pretrained(
    "MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
)

tokenizer_ru2en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
model_ru2en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
tokenizer_en2ru = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
model_en2ru = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru")

transcriber = pipeline(
    "automatic-speech-recognition", model="artyomboyko/whisper-base-fine_tuned-ru"
)


def translate_ru2en(text):
    inputs = tokenizer_ru2en(text, return_tensors="pt")
    outputs = model_ru2en.generate(**inputs)
    translated_text = tokenizer_ru2en.decode(outputs[0], skip_special_tokens=True)
    return translated_text


def translate_en2ru(text):
    inputs = tokenizer_en2ru(text, return_tensors="pt")
    outputs = model_en2ru.generate(**inputs)
    translated_text = tokenizer_en2ru.decode(outputs[0], skip_special_tokens=True)
    return translated_text


def generate_answer_git(image, question):
    with torch.no_grad():
        encoding = processor(
            images=image,
            text=question,
            return_tensors="pt",
            max_length=512,
            truncation=True,
        )
        outputs = model(**encoding)
        start_logits = outputs.start_logits
        end_logits = outputs.end_logits
        predicted_start_idx = start_logits.argmax(-1).item()
        predicted_end_idx = end_logits.argmax(-1).item()

    return processor.tokenizer.decode(
        encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
    )


def generate_answer(image, question):
    question_en = translate_ru2en(question)
    print(f"Вопрос на английском: {question_en}")

    answer_en = generate_answer_git(image, question_en)
    print(f"Ответ на английском: {answer_en}")

    answer_ru = translate_en2ru(answer_en)

    return answer_ru


def transcribe(image, audio):
    if not image or not audio:
        return

    sr, y = audio

    # Convert stereo to mono if necessary
    if y.ndim > 1:
        y = y.mean(axis=1)

    # Convert the numpy array to a PyTorch tensor for torchaudio processing
    y_tensor = torch.tensor(y, dtype=torch.float32)

    if sr != 16000:
        resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
        y_tensor = resampler(y_tensor)
        sr = 16000

    # Normalize the audio
    y_tensor /= torch.max(torch.abs(y_tensor))

    # Convert back to a numpy array for compatibility with the feature extractor
    y = y_tensor.numpy()

    # Create input features for the Whisper model
    input_features = transcriber.feature_extractor(
        y, sampling_rate=sr, return_tensors="pt"
    ).input_features

    transcription = transcriber.model.generate(input_features)
    transcription_text = transcriber.tokenizer.decode(
        transcription[0], skip_special_tokens=True
    )

    return generate_answer(image, transcription_text)


qa_interface = gr.Interface(
    fn=generate_answer,
    inputs=[
        gr.Image(type="pil"),
        gr.Textbox(label="Вопрос (на русском)", placeholder="Ваш вопрос"),
    ],
    outputs=gr.Textbox(label="Ответ (на русском)"),
    examples=[["doc.png", "О чем данный документ?"]],
    live=False,
)

# Interface for real-time speech recognition
speech_interface = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Image(type="pil"),
        gr.Audio(sources="microphone", label="Голосовой ввод"),
    ],
    outputs=gr.Textbox(label="Распознанный текст"),
    live=True,
)

# Combine the interfaces in a Gradio Tabbed layout
interface = gr.TabbedInterface(
    [qa_interface, speech_interface],
    ["Текстовый вопрос", "Голосовой вопрос"],
    title="Демо визуального ответчика на вопросы (на русском)",
    # description=(
    #     "Gradio демо для модели doc-qa с переводом вопросов и ответов"
    #     "на русский язык. Загрузите изображение и задайте вопрос, чтобы"
    #     "получить ответ. Вы также можете использовать голосовой ввод!"
    # ),
    # live=True,
)

interface.launch(debug=True, share=True)