Spaces:
Runtime error
Runtime error
upd: generate_answer
Browse files
app.py
CHANGED
|
@@ -5,8 +5,14 @@ from transformers import (
|
|
| 5 |
AutoProcessor,
|
| 6 |
AutoModelForDocumentQuestionAnswering,
|
| 7 |
)
|
| 8 |
-
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
tokenizer_ru2en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
|
| 12 |
model_ru2en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
|
|
@@ -14,14 +20,6 @@ model_ru2en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en"
|
|
| 14 |
tokenizer_en2ru = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
|
| 15 |
model_en2ru = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
|
| 16 |
|
| 17 |
-
git_processor_base = AutoProcessor.from_pretrained("microsoft/layoutlmv2-base-uncased")
|
| 18 |
-
|
| 19 |
-
image_processor = git_processor_base.image_processor
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
def preprocess_image(image):
|
| 23 |
-
return git_processor_base(images=image, return_tensors="pt").pixel_values
|
| 24 |
-
|
| 25 |
|
| 26 |
def translate_ru2en(text):
|
| 27 |
inputs = tokenizer_ru2en(text, return_tensors="pt")
|
|
@@ -39,11 +37,23 @@ def translate_en2ru(text):
|
|
| 39 |
|
| 40 |
def generate_answer_git(image, question):
|
| 41 |
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 45 |
)
|
| 46 |
-
return qa_pipeline(preprocess_image(image), question)[0]["answer"]
|
| 47 |
|
| 48 |
|
| 49 |
def generate_answer(image, question):
|
|
|
|
| 5 |
AutoProcessor,
|
| 6 |
AutoModelForDocumentQuestionAnswering,
|
| 7 |
)
|
| 8 |
+
import torch
|
| 9 |
|
| 10 |
+
processor = AutoProcessor.from_pretrained(
|
| 11 |
+
"MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
|
| 12 |
+
)
|
| 13 |
+
model = AutoModelForDocumentQuestionAnswering.from_pretrained(
|
| 14 |
+
"MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
|
| 15 |
+
)
|
| 16 |
|
| 17 |
tokenizer_ru2en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
|
| 18 |
model_ru2en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
|
|
|
|
| 20 |
tokenizer_en2ru = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
|
| 21 |
model_en2ru = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
|
| 22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
def translate_ru2en(text):
|
| 25 |
inputs = tokenizer_ru2en(text, return_tensors="pt")
|
|
|
|
| 37 |
|
| 38 |
def generate_answer_git(image, question):
|
| 39 |
|
| 40 |
+
with torch.no_grad():
|
| 41 |
+
encoding = processor(
|
| 42 |
+
images=image,
|
| 43 |
+
text=question,
|
| 44 |
+
return_tensors="pt",
|
| 45 |
+
max_length=512,
|
| 46 |
+
truncation=True,
|
| 47 |
+
)
|
| 48 |
+
outputs = model(**encoding)
|
| 49 |
+
start_logits = outputs.start_logits
|
| 50 |
+
end_logits = outputs.end_logits
|
| 51 |
+
predicted_start_idx = start_logits.argmax(-1).item()
|
| 52 |
+
predicted_end_idx = end_logits.argmax(-1).item()
|
| 53 |
+
|
| 54 |
+
return processor.tokenizer.decode(
|
| 55 |
+
encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
|
| 56 |
)
|
|
|
|
| 57 |
|
| 58 |
|
| 59 |
def generate_answer(image, question):
|