Spaces:
Runtime error
Runtime error
upd: resemple audio for whisper
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ from transformers import (
|
|
7 |
pipeline,
|
8 |
)
|
9 |
import torch
|
10 |
-
import
|
11 |
|
12 |
processor = AutoProcessor.from_pretrained(
|
13 |
"MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
|
@@ -78,13 +78,25 @@ def transcribe(image, audio):
|
|
78 |
|
79 |
sr, y = audio
|
80 |
|
81 |
-
# Convert to mono if
|
82 |
if y.ndim > 1:
|
83 |
y = y.mean(axis=1)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
input_features = transcriber.feature_extractor(
|
89 |
y, sampling_rate=sr, return_tensors="pt"
|
90 |
).input_features
|
|
|
7 |
pipeline,
|
8 |
)
|
9 |
import torch
|
10 |
+
import torchaudio
|
11 |
|
12 |
processor = AutoProcessor.from_pretrained(
|
13 |
"MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
|
|
|
78 |
|
79 |
sr, y = audio
|
80 |
|
81 |
+
# Convert stereo to mono if necessary
|
82 |
if y.ndim > 1:
|
83 |
y = y.mean(axis=1)
|
84 |
|
85 |
+
# Convert the numpy array to a PyTorch tensor for torchaudio processing
|
86 |
+
y_tensor = torch.tensor(y, dtype=torch.float32)
|
87 |
|
88 |
+
if sr != 16000:
|
89 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
|
90 |
+
y_tensor = resampler(y_tensor)
|
91 |
+
sr = 16000
|
92 |
+
|
93 |
+
# Normalize the audio
|
94 |
+
y_tensor /= torch.max(torch.abs(y_tensor))
|
95 |
+
|
96 |
+
# Convert back to a numpy array for compatibility with the feature extractor
|
97 |
+
y = y_tensor.numpy()
|
98 |
+
|
99 |
+
# Create input features for the Whisper model
|
100 |
input_features = transcriber.feature_extractor(
|
101 |
y, sampling_rate=sr, return_tensors="pt"
|
102 |
).input_features
|