File size: 4,106 Bytes
abcdc69
 
 
 
 
fbf438c
55b76ac
2891eba
abcdc69
36e06f1
2891eba
 
 
 
 
3c9287e
36e06f1
c61a50f
36e06f1
 
c61a50f
36e06f1
abcdc69
 
 
 
 
 
658a6fd
1e19f64
658a6fd
55b76ac
abcdc69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bddd88
36e06f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
abcdc69
 
 
 
 
 
 
8bddd88
abcdc69
 
 
 
 
 
 
2891eba
 
 
 
 
 
 
 
 
 
 
7ce07b6
 
 
 
 
55b76ac
 
 
2891eba
 
 
 
1e19f64
cfcd1f4
 
55b76ac
abcdc69
658a6fd
abcdc69
 
22f2eb7
 
abcdc69
2891eba
 
 
 
55b76ac
658a6fd
 
 
 
 
 
 
c602ea4
658a6fd
2891eba
 
 
 
658a6fd
 
 
 
 
abcdc69
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import gradio as gr
from transformers import (
    AutoTokenizer,
    AutoModelForSeq2SeqLM,
    AutoProcessor,
    AutoModelForDocumentQuestionAnswering,
    pipeline,
    VitsModel,
)
import torch
import numpy as np


mms_tts_model = VitsModel.from_pretrained("facebook/mms-tts-rus")
mms_tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")

processor = AutoProcessor.from_pretrained(
    "MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
)
model = AutoModelForDocumentQuestionAnswering.from_pretrained(
    "MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
)

tokenizer_ru2en = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
model_ru2en = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-ru-en")
tokenizer_en2ru = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-ru")
model_en2ru = AutoModelForSeq2SeqLM.from_pretrained("Helsinki-NLP/opus-mt-en-ru")

transcriber = pipeline(
    "automatic-speech-recognition", model="lorenzoncina/whisper-medium-ru"
)


def translate_ru2en(text):
    inputs = tokenizer_ru2en(text, return_tensors="pt")
    outputs = model_ru2en.generate(**inputs)
    translated_text = tokenizer_ru2en.decode(outputs[0], skip_special_tokens=True)
    return translated_text


def translate_en2ru(text):
    inputs = tokenizer_en2ru(text, return_tensors="pt")
    outputs = model_en2ru.generate(**inputs)
    translated_text = tokenizer_en2ru.decode(outputs[0], skip_special_tokens=True)
    return translated_text


def generate_answer_git(image, question):
    with torch.no_grad():
        encoding = processor(
            images=image,
            text=question,
            return_tensors="pt",
            max_length=512,
            truncation=True,
        )
        outputs = model(**encoding)
        start_logits = outputs.start_logits
        end_logits = outputs.end_logits
        predicted_start_idx = start_logits.argmax(-1).item()
        predicted_end_idx = end_logits.argmax(-1).item()

    return processor.tokenizer.decode(
        encoding.input_ids.squeeze()[predicted_start_idx : predicted_end_idx + 1]
    )


def generate_answer(image, question):
    question_en = translate_ru2en(question)
    print(f"Вопрос на английском: {question_en}")

    answer_en = generate_answer_git(image, question_en)
    print(f"Ответ на английском: {answer_en}")

    answer_ru = translate_en2ru(answer_en)

    return answer_ru


def text_to_speech(text):

    inputs = mms_tts_tokenizer(text, return_tensors="pt")

    with torch.no_grad():
        output = mms_tts_model(**inputs).waveform

    audio = output.numpy()
    return text, (16000, audio.squeeze())


def transcribe(image, audio):
    if not image or not audio:
        return

    sr, y = audio

    if y.ndim > 1:
        y = y.mean(axis=1)

    y = y.astype(np.float32)
    y /= np.max(np.abs(y))

    transcription_text = transcriber({"sampling_rate": sr, "raw": y})["text"]

    return generate_answer(image, transcription_text)


qa_interface = gr.Interface(
    fn=generate_answer,
    inputs=[
        gr.Image(type="pil"),
        gr.Textbox(label="Вопрос (на русском)", placeholder="Ваш вопрос"),
    ],
    outputs=[
        gr.Textbox(label="Ответ (на русском)"),
        gr.Audio(label="Сгенерированное аудио"),
    ],
    examples=[["doc.png", "О чем данный документ?"]],
    live=False,
)

speech_interface = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Image(type="pil"),
        gr.Audio(sources="microphone", label="Голосовой ввод"),
    ],
    outputs=[
        gr.Textbox(label="Ответ (на русском)"),
        gr.Audio(label="Сгенерированное аудио"),
    ],
    live=True,
)
interface = gr.TabbedInterface(
    [qa_interface, speech_interface],
    ["Текстовый вопрос", "Голосовой вопрос"],
    title="Демо визуального ответчика на вопросы (на русском)",
)

interface.launch(debug=True, share=True)