Spaces:
Runtime error
Runtime error
upd: audio output
Browse files
app.py
CHANGED
@@ -5,8 +5,14 @@ from transformers import (
|
|
5 |
AutoProcessor,
|
6 |
AutoModelForDocumentQuestionAnswering,
|
7 |
pipeline,
|
|
|
8 |
)
|
9 |
import torch
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
processor = AutoProcessor.from_pretrained(
|
12 |
"MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
|
@@ -71,6 +77,17 @@ def generate_answer(image, question):
|
|
71 |
return answer_ru
|
72 |
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def transcribe(image, audio):
|
75 |
if not image or not audio:
|
76 |
return
|
@@ -79,6 +96,10 @@ def transcribe(image, audio):
|
|
79 |
|
80 |
if y.ndim > 1:
|
81 |
y = y.mean(axis=1)
|
|
|
|
|
|
|
|
|
82 |
transcription_text = transcriber({"sampling_rate": sr, "raw": y})["text"]
|
83 |
|
84 |
return generate_answer(image, transcription_text)
|
@@ -90,7 +111,10 @@ qa_interface = gr.Interface(
|
|
90 |
gr.Image(type="pil"),
|
91 |
gr.Textbox(label="Вопрос (на русском)", placeholder="Ваш вопрос"),
|
92 |
],
|
93 |
-
outputs=
|
|
|
|
|
|
|
94 |
examples=[["doc.png", "О чем данный документ?"]],
|
95 |
live=False,
|
96 |
)
|
@@ -101,7 +125,10 @@ speech_interface = gr.Interface(
|
|
101 |
gr.Image(type="pil"),
|
102 |
gr.Audio(sources="microphone", label="Голосовой ввод"),
|
103 |
],
|
104 |
-
outputs=
|
|
|
|
|
|
|
105 |
live=True,
|
106 |
)
|
107 |
interface = gr.TabbedInterface(
|
|
|
5 |
AutoProcessor,
|
6 |
AutoModelForDocumentQuestionAnswering,
|
7 |
pipeline,
|
8 |
+
VitsModel,
|
9 |
)
|
10 |
import torch
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
|
14 |
+
mms_tts_model = VitsModel.from_pretrained("facebook/mms-tts-rus")
|
15 |
+
mms_tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-rus")
|
16 |
|
17 |
processor = AutoProcessor.from_pretrained(
|
18 |
"MariaK/layoutlmv2-base-uncased_finetuned_docvqa_v2"
|
|
|
77 |
return answer_ru
|
78 |
|
79 |
|
80 |
+
def text_to_speech(text):
|
81 |
+
|
82 |
+
inputs = mms_tts_tokenizer(text, return_tensors="pt")
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
output = mms_tts_model(**inputs).waveform
|
86 |
+
|
87 |
+
audio = output.numpy()
|
88 |
+
return text, (16000, audio.squeeze())
|
89 |
+
|
90 |
+
|
91 |
def transcribe(image, audio):
|
92 |
if not image or not audio:
|
93 |
return
|
|
|
96 |
|
97 |
if y.ndim > 1:
|
98 |
y = y.mean(axis=1)
|
99 |
+
|
100 |
+
y = y.astype(np.float32)
|
101 |
+
y /= np.max(np.abs(y))
|
102 |
+
|
103 |
transcription_text = transcriber({"sampling_rate": sr, "raw": y})["text"]
|
104 |
|
105 |
return generate_answer(image, transcription_text)
|
|
|
111 |
gr.Image(type="pil"),
|
112 |
gr.Textbox(label="Вопрос (на русском)", placeholder="Ваш вопрос"),
|
113 |
],
|
114 |
+
outputs=[
|
115 |
+
gr.Textbox(label="Ответ (на русском)"),
|
116 |
+
gr.Audio(label="Сгенерированное аудио"),
|
117 |
+
],
|
118 |
examples=[["doc.png", "О чем данный документ?"]],
|
119 |
live=False,
|
120 |
)
|
|
|
125 |
gr.Image(type="pil"),
|
126 |
gr.Audio(sources="microphone", label="Голосовой ввод"),
|
127 |
],
|
128 |
+
outputs=[
|
129 |
+
gr.Textbox(label="Ответ (на русском)"),
|
130 |
+
gr.Audio(label="Сгенерированное аудио"),
|
131 |
+
],
|
132 |
live=True,
|
133 |
)
|
134 |
interface = gr.TabbedInterface(
|