File size: 11,020 Bytes
8a9be66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6282b8b
 
 
8a9be66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6282b8b
8a9be66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6282b8b
 
8a9be66
 
 
 
 
 
 
 
 
 
6282b8b
8a9be66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fe0c4a
 
6282b8b
8fe0c4a
6282b8b
 
 
 
 
 
 
 
 
 
 
 
 
8fe0c4a
6282b8b
8fe0c4a
6282b8b
 
 
 
8fe0c4a
6282b8b
8fe0c4a
6282b8b
 
8fe0c4a
6282b8b
 
 
8fe0c4a
6282b8b
 
8fe0c4a
6282b8b
 
 
 
 
8fe0c4a
6282b8b
8fe0c4a
6282b8b
8fe0c4a
6282b8b
 
 
 
 
 
 
 
 
 
 
b722033
6282b8b
b722033
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
# # %%writefile app.py

# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset, Dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import pandas as pd
# import random
# from collections import OrderedDict
# import flwr as fl

# DEVICE = torch.device("cpu")

# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
#     raw_datasets = load_dataset(dataset_name)
#     raw_datasets = raw_datasets.shuffle(seed=42)
#     del raw_datasets["unsupervised"]

#     tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

#     def tokenize_function(examples):
#         return tokenizer(examples["text"], truncation=True)

#     tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
#     tokenized_datasets = tokenized_datasets.remove_columns("text")
#     tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

#     train_datasets = []
#     test_datasets = []

#     for _ in range(num_clients):
#         train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
#         test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
#         train_datasets.append(train_dataset)
#         test_datasets.append(test_dataset)

#     data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

#     return train_datasets, test_datasets, data_collator
# def read_log_file():
#     with open("./log.txt", "r") as file:
#         return file.read()
# def train(net, trainloader, epochs):
#     optimizer = AdamW(net.parameters(), lr=5e-5)
#     net.train()
#     for _ in range(epochs):
#         for batch in trainloader:
#             batch = {k: v.to(DEVICE) for k, v in batch.items()}
#             outputs = net(**batch)
#             loss = outputs.loss
#             loss.backward()
#             optimizer.step()
#             optimizer.zero_grad()

# def test(net, testloader):
#     metric = load_metric("accuracy")
#     net.eval()
#     loss = 0
#     for batch in testloader:
#         batch = {k: v.to(DEVICE) for k, v in batch.items()}
#         with torch.no_grad():
#             outputs = net(**batch)
#         logits = outputs.logits
#         loss += outputs.loss.item()
#         predictions = torch.argmax(logits, dim=-1)
#         metric.add_batch(predictions=predictions, references=batch["labels"])
#     loss /= len(testloader)
#     accuracy = metric.compute()["accuracy"]
#     return loss, accuracy

# class CustomClient(fl.client.NumPyClient):
#     def __init__(self, net, trainloader, testloader, client_id):
#         self.net = net
#         self.trainloader = trainloader
#         self.testloader = testloader
#         self.client_id = client_id
#         self.losses = []
#         self.accuracies = []

#     def get_parameters(self, config):
#         return [val.cpu().numpy() for _, val in self.net.state_dict().items()]

#     def set_parameters(self, parameters):
#         params_dict = zip(self.net.state_dict().keys(), parameters)
#         state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
#         self.net.load_state_dict(state_dict, strict=True)

#     def fit(self, parameters, config):
#         self.set_parameters(parameters)
#         train(self.net, self.trainloader, epochs=1)
#         loss, accuracy = test(self.net, self.testloader)
#         self.losses.append(loss)
#         self.accuracies.append(accuracy)
#         return self.get_parameters(config={}), len(self.trainloader.dataset), {}

#     def evaluate(self, parameters, config):
#         self.set_parameters(parameters)
#         loss, accuracy = test(self.net, self.testloader)
#         return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}

#     def plot_metrics(self, round_num, plot_placeholder):
#         if self.losses and self.accuracies:
#             plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
#             plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
#             plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")

#             fig, ax1 = plt.subplots()

#             color = 'tab:red'
#             ax1.set_xlabel('Round')
#             ax1.set_ylabel('Loss', color=color)
#             ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
#             ax1.tick_params(axis='y', labelcolor=color)

#             ax2 = ax1.twinx()  # instantiate a second axes that shares the same x-axis
#             color = 'tab:blue'
#             ax2.set_ylabel('Accuracy', color=color)
#             ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
#             ax2.tick_params(axis='y', labelcolor=color)

#             fig.tight_layout()
#             plot_placeholder.pyplot(fig)

# def main():
#     st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
#     dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
#     model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])

#     NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
#     NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)

#     train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)

#     trainloaders = []
#     testloaders = []
#     clients = []

#     for i in range(NUM_CLIENTS):
#         st.write(f"### Client {i+1} Datasets")

#         train_df = pd.DataFrame(train_datasets[i])
#         test_df = pd.DataFrame(test_datasets[i])

#         st.write("#### Train Dataset")
#         edited_train_df = st.data_editor(train_df, key=f"train_{i}")
#         st.write("#### Test Dataset")
#         edited_test_df = st.data_editor(test_df, key=f"test_{i}")

#         edited_train_dataset = Dataset.from_pandas(edited_train_df)
#         edited_test_dataset = Dataset.from_pandas(edited_test_df)

#         trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
#         testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)

#         trainloaders.append(trainloader)
#         testloaders.append(testloader)

#         net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
#         client = CustomClient(net, trainloader, testloader, client_id=i+1)
#         clients.append(client)

#     if st.button("Start Training"):
#         def client_fn(cid):
#             return clients[int(cid)]

#         def weighted_average(metrics):
#             accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
#             losses = [num_examples * m["loss"] for num_examples, m in metrics]
#             examples = [num_examples for num_examples, _ in metrics]
#             return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}

#         strategy = fl.server.strategy.FedAvg(
#             fraction_fit=1.0,
#             fraction_evaluate=1.0,
#             evaluate_metrics_aggregation_fn=weighted_average,
#         )

#         for round_num in range(NUM_ROUNDS):
#             st.write(f"### Round {round_num + 1}")
#             plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
#             fl.common.logger.configure(identifier="myFlowerExperiment", filename="./log.txt")
            
#             fl.simulation.start_simulation(
#                 client_fn=client_fn,
#                 num_clients=NUM_CLIENTS,
#                 config=fl.server.ServerConfig(num_rounds=1),
#                 strategy=strategy,
#                 client_resources={"num_cpus": 1, "num_gpus": 0},
#                 ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
#             )

#             for i, client in enumerate(clients):
#                 st.markdown("LOGS : "+ read_log_file())
#                 client.plot_metrics(round_num + 1, plot_placeholders[i])
#                 st.write(" ")

#         st.success("Training completed successfully!")

#         # Display final metrics
#         st.write("## Final Client Metrics")
#         for client in clients:
#             st.write(f"### Client {client.client_id}")
#             st.write(f"Final Loss: {client.losses[-1]:.4f}")
#             st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
#             client.plot_metrics(NUM_ROUNDS, st.empty())
#             st.write(" ")

#     else:
#         st.write("Click the 'Start Training' button to start the training process.")

# if __name__ == "__main__":
#     main()



# %%writefile app.py

import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset, Dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import pandas as pd
import random
from collections import OrderedDict
import flwr as fl
from logging import INFO, DEBUG
from flwr.common.logger import log

DEVICE = torch.device("cpu")

def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
    raw_datasets = load_dataset(dataset_name)
    raw_datasets = raw_datasets.shuffle(seed=42)
    del raw_datasets["unsupervised"]

    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

    def tokenize_function(examples):
        return tokenizer(examples["text"], truncation=True)

    tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
    tokenized_datasets = tokenized_datasets.remove_columns("text")
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

    train_datasets = []
    test_datasets = []

    for _ in range(num_clients):
        train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
        test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
        train_datasets.append(train_dataset)
        test_datasets.append(test_dataset)

    data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

    return train_datasets, test_datasets, data_collator, raw_datasets

def train(net, trainloader, epochs):
    optimizer = AdamW(net.parameters(), lr=5e-5)
    net.train()
    for _ in range(epochs):
        for batch in trainloader:
            batch = {k: v.to(DEVICE) for k, v in batch.items()}
            outputs = net(**batch)
            loss = outputs.loss
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

def test(net, testloader