Update app.py
Browse files
app.py
CHANGED
@@ -1,220 +1,3 @@
|
|
1 |
-
# %%writefile app.py
|
2 |
-
|
3 |
-
import streamlit as st
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import torch
|
6 |
-
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
7 |
-
from datasets import load_dataset, Dataset
|
8 |
-
from evaluate import load as load_metric
|
9 |
-
from torch.utils.data import DataLoader
|
10 |
-
import pandas as pd
|
11 |
-
import random
|
12 |
-
from collections import OrderedDict
|
13 |
-
import flwr as fl
|
14 |
-
|
15 |
-
DEVICE = torch.device("cpu")
|
16 |
-
|
17 |
-
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
18 |
-
raw_datasets = load_dataset(dataset_name)
|
19 |
-
raw_datasets = raw_datasets.shuffle(seed=42)
|
20 |
-
del raw_datasets["unsupervised"]
|
21 |
-
|
22 |
-
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
23 |
-
|
24 |
-
def tokenize_function(examples):
|
25 |
-
return tokenizer(examples["text"], truncation=True)
|
26 |
-
|
27 |
-
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
28 |
-
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
29 |
-
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
30 |
-
|
31 |
-
train_datasets = []
|
32 |
-
test_datasets = []
|
33 |
-
|
34 |
-
for _ in range(num_clients):
|
35 |
-
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
36 |
-
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
37 |
-
train_datasets.append(train_dataset)
|
38 |
-
test_datasets.append(test_dataset)
|
39 |
-
|
40 |
-
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
41 |
-
|
42 |
-
return train_datasets, test_datasets, data_collator
|
43 |
-
def read_log_file():
|
44 |
-
with open("./log.txt", "r") as file:
|
45 |
-
return file.read()
|
46 |
-
def train(net, trainloader, epochs):
|
47 |
-
optimizer = AdamW(net.parameters(), lr=5e-5)
|
48 |
-
net.train()
|
49 |
-
for _ in range(epochs):
|
50 |
-
for batch in trainloader:
|
51 |
-
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
52 |
-
outputs = net(**batch)
|
53 |
-
loss = outputs.loss
|
54 |
-
loss.backward()
|
55 |
-
optimizer.step()
|
56 |
-
optimizer.zero_grad()
|
57 |
-
|
58 |
-
def test(net, testloader):
|
59 |
-
metric = load_metric("accuracy")
|
60 |
-
net.eval()
|
61 |
-
loss = 0
|
62 |
-
for batch in testloader:
|
63 |
-
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
64 |
-
with torch.no_grad():
|
65 |
-
outputs = net(**batch)
|
66 |
-
logits = outputs.logits
|
67 |
-
loss += outputs.loss.item()
|
68 |
-
predictions = torch.argmax(logits, dim=-1)
|
69 |
-
metric.add_batch(predictions=predictions, references=batch["labels"])
|
70 |
-
loss /= len(testloader)
|
71 |
-
accuracy = metric.compute()["accuracy"]
|
72 |
-
return loss, accuracy
|
73 |
-
|
74 |
-
class CustomClient(fl.client.NumPyClient):
|
75 |
-
def __init__(self, net, trainloader, testloader, client_id):
|
76 |
-
self.net = net
|
77 |
-
self.trainloader = trainloader
|
78 |
-
self.testloader = testloader
|
79 |
-
self.client_id = client_id
|
80 |
-
self.losses = []
|
81 |
-
self.accuracies = []
|
82 |
-
|
83 |
-
def get_parameters(self, config):
|
84 |
-
return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
85 |
-
|
86 |
-
def set_parameters(self, parameters):
|
87 |
-
params_dict = zip(self.net.state_dict().keys(), parameters)
|
88 |
-
state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
89 |
-
self.net.load_state_dict(state_dict, strict=True)
|
90 |
-
|
91 |
-
def fit(self, parameters, config):
|
92 |
-
self.set_parameters(parameters)
|
93 |
-
train(self.net, self.trainloader, epochs=1)
|
94 |
-
loss, accuracy = test(self.net, self.testloader)
|
95 |
-
self.losses.append(loss)
|
96 |
-
self.accuracies.append(accuracy)
|
97 |
-
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
98 |
-
|
99 |
-
def evaluate(self, parameters, config):
|
100 |
-
self.set_parameters(parameters)
|
101 |
-
loss, accuracy = test(self.net, self.testloader)
|
102 |
-
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
103 |
-
|
104 |
-
def plot_metrics(self, round_num, plot_placeholder):
|
105 |
-
if self.losses and self.accuracies:
|
106 |
-
plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
107 |
-
plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
|
108 |
-
plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
109 |
-
|
110 |
-
fig, ax1 = plt.subplots()
|
111 |
-
|
112 |
-
color = 'tab:red'
|
113 |
-
ax1.set_xlabel('Round')
|
114 |
-
ax1.set_ylabel('Loss', color=color)
|
115 |
-
ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
|
116 |
-
ax1.tick_params(axis='y', labelcolor=color)
|
117 |
-
|
118 |
-
ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
119 |
-
color = 'tab:blue'
|
120 |
-
ax2.set_ylabel('Accuracy', color=color)
|
121 |
-
ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
|
122 |
-
ax2.tick_params(axis='y', labelcolor=color)
|
123 |
-
|
124 |
-
fig.tight_layout()
|
125 |
-
plot_placeholder.pyplot(fig)
|
126 |
-
|
127 |
-
def main():
|
128 |
-
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
129 |
-
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
130 |
-
model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
131 |
-
|
132 |
-
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
133 |
-
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
134 |
-
|
135 |
-
train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
136 |
-
|
137 |
-
trainloaders = []
|
138 |
-
testloaders = []
|
139 |
-
clients = []
|
140 |
-
|
141 |
-
for i in range(NUM_CLIENTS):
|
142 |
-
st.write(f"### Client {i+1} Datasets")
|
143 |
-
|
144 |
-
train_df = pd.DataFrame(train_datasets[i])
|
145 |
-
test_df = pd.DataFrame(test_datasets[i])
|
146 |
-
|
147 |
-
st.write("#### Train Dataset")
|
148 |
-
edited_train_df = st.data_editor(train_df, key=f"train_{i}")
|
149 |
-
st.write("#### Test Dataset")
|
150 |
-
edited_test_df = st.data_editor(test_df, key=f"test_{i}")
|
151 |
-
|
152 |
-
edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
153 |
-
edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
154 |
-
|
155 |
-
trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
156 |
-
testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
157 |
-
|
158 |
-
trainloaders.append(trainloader)
|
159 |
-
testloaders.append(testloader)
|
160 |
-
|
161 |
-
net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
162 |
-
client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
163 |
-
clients.append(client)
|
164 |
-
|
165 |
-
if st.button("Start Training"):
|
166 |
-
def client_fn(cid):
|
167 |
-
return clients[int(cid)]
|
168 |
-
|
169 |
-
def weighted_average(metrics):
|
170 |
-
accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
171 |
-
losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
172 |
-
examples = [num_examples for num_examples, _ in metrics]
|
173 |
-
return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
174 |
-
|
175 |
-
strategy = fl.server.strategy.FedAvg(
|
176 |
-
fraction_fit=1.0,
|
177 |
-
fraction_evaluate=1.0,
|
178 |
-
evaluate_metrics_aggregation_fn=weighted_average,
|
179 |
-
)
|
180 |
-
|
181 |
-
for round_num in range(NUM_ROUNDS):
|
182 |
-
st.write(f"### Round {round_num + 1}")
|
183 |
-
plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
184 |
-
fl.common.logger.configure(identifier="myFlowerExperiment", filename="./log.txt")
|
185 |
-
|
186 |
-
fl.simulation.start_simulation(
|
187 |
-
client_fn=client_fn,
|
188 |
-
num_clients=NUM_CLIENTS,
|
189 |
-
config=fl.server.ServerConfig(num_rounds=1),
|
190 |
-
strategy=strategy,
|
191 |
-
client_resources={"num_cpus": 1, "num_gpus": 0},
|
192 |
-
ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
193 |
-
)
|
194 |
-
|
195 |
-
for i, client in enumerate(clients):
|
196 |
-
st.markdown("LOGS : "+ read_log_file())
|
197 |
-
client.plot_metrics(round_num + 1, plot_placeholders[i])
|
198 |
-
st.write(" ")
|
199 |
-
|
200 |
-
st.success("Training completed successfully!")
|
201 |
-
|
202 |
-
# Display final metrics
|
203 |
-
st.write("## Final Client Metrics")
|
204 |
-
for client in clients:
|
205 |
-
st.write(f"### Client {client.client_id}")
|
206 |
-
st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
207 |
-
st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
208 |
-
client.plot_metrics(NUM_ROUNDS, st.empty())
|
209 |
-
st.write(" ")
|
210 |
-
|
211 |
-
else:
|
212 |
-
st.write("Click the 'Start Training' button to start the training process.")
|
213 |
-
|
214 |
-
if __name__ == "__main__":
|
215 |
-
main()
|
216 |
-
|
217 |
-
# #############
|
218 |
# # %%writefile app.py
|
219 |
|
220 |
# import streamlit as st
|
@@ -228,8 +11,6 @@ if __name__ == "__main__":
|
|
228 |
# import random
|
229 |
# from collections import OrderedDict
|
230 |
# import flwr as fl
|
231 |
-
# from logging import INFO, DEBUG
|
232 |
-
# from flwr.common.logger import log
|
233 |
|
234 |
# DEVICE = torch.device("cpu")
|
235 |
|
@@ -259,7 +40,9 @@ if __name__ == "__main__":
|
|
259 |
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
260 |
|
261 |
# return train_datasets, test_datasets, data_collator
|
262 |
-
|
|
|
|
|
263 |
# def train(net, trainloader, epochs):
|
264 |
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
265 |
# net.train()
|
@@ -306,20 +89,16 @@ if __name__ == "__main__":
|
|
306 |
# self.net.load_state_dict(state_dict, strict=True)
|
307 |
|
308 |
# def fit(self, parameters, config):
|
309 |
-
# log(INFO, f"Client {self.client_id} is starting fit()")
|
310 |
# self.set_parameters(parameters)
|
311 |
# train(self.net, self.trainloader, epochs=1)
|
312 |
# loss, accuracy = test(self.net, self.testloader)
|
313 |
# self.losses.append(loss)
|
314 |
# self.accuracies.append(accuracy)
|
315 |
-
# log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
316 |
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
317 |
|
318 |
# def evaluate(self, parameters, config):
|
319 |
-
# log(INFO, f"Client {self.client_id} is starting evaluate()")
|
320 |
# self.set_parameters(parameters)
|
321 |
# loss, accuracy = test(self.net, self.testloader)
|
322 |
-
# log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
323 |
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
324 |
|
325 |
# def plot_metrics(self, round_num, plot_placeholder):
|
@@ -345,14 +124,10 @@ if __name__ == "__main__":
|
|
345 |
# fig.tight_layout()
|
346 |
# plot_placeholder.pyplot(fig)
|
347 |
|
348 |
-
# def read_log_file():
|
349 |
-
# with open("log.txt", "r") as file:
|
350 |
-
# return file.read()
|
351 |
-
|
352 |
# def main():
|
353 |
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
354 |
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
355 |
-
# model_name = st.selectbox("Model", ["bert-base-uncased",
|
356 |
|
357 |
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
358 |
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
@@ -406,7 +181,8 @@ if __name__ == "__main__":
|
|
406 |
# for round_num in range(NUM_ROUNDS):
|
407 |
# st.write(f"### Round {round_num + 1}")
|
408 |
# plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
409 |
-
|
|
|
410 |
# fl.simulation.start_simulation(
|
411 |
# client_fn=client_fn,
|
412 |
# num_clients=NUM_CLIENTS,
|
@@ -417,6 +193,7 @@ if __name__ == "__main__":
|
|
417 |
# )
|
418 |
|
419 |
# for i, client in enumerate(clients):
|
|
|
420 |
# client.plot_metrics(round_num + 1, plot_placeholders[i])
|
421 |
# st.write(" ")
|
422 |
|
@@ -431,1009 +208,70 @@ if __name__ == "__main__":
|
|
431 |
# client.plot_metrics(NUM_ROUNDS, st.empty())
|
432 |
# st.write(" ")
|
433 |
|
434 |
-
# # Display log.txt content
|
435 |
-
# st.write("## Training Log")
|
436 |
-
# st.text(read_log_file())
|
437 |
-
|
438 |
# else:
|
439 |
# st.write("Click the 'Start Training' button to start the training process.")
|
440 |
|
441 |
# if __name__ == "__main__":
|
442 |
# main()
|
443 |
|
444 |
-
#############
|
445 |
-
|
446 |
-
# # %%writefile app.py
|
447 |
-
|
448 |
-
# import streamlit as st
|
449 |
-
# import matplotlib.pyplot as plt
|
450 |
-
# import torch
|
451 |
-
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
452 |
-
# from datasets import load_dataset, Dataset
|
453 |
-
# from evaluate import load as load_metric
|
454 |
-
# from torch.utils.data import DataLoader
|
455 |
-
# import pandas as pd
|
456 |
-
# import random
|
457 |
-
# import warnings
|
458 |
-
# from collections import OrderedDict
|
459 |
-
# import flwr as fl
|
460 |
-
|
461 |
-
# DEVICE = torch.device("cpu")
|
462 |
-
|
463 |
-
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
464 |
-
# raw_datasets = load_dataset(dataset_name)
|
465 |
-
# raw_datasets = raw_datasets.shuffle(seed=42)
|
466 |
-
# del raw_datasets["unsupervised"]
|
467 |
-
|
468 |
-
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
469 |
-
|
470 |
-
# def tokenize_function(examples):
|
471 |
-
# return tokenizer(examples["text"], truncation=True)
|
472 |
-
|
473 |
-
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
474 |
-
# tokenized_datasets = tokenized_datasets.remove_columns("text")
|
475 |
-
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
476 |
-
|
477 |
-
# train_datasets = []
|
478 |
-
# test_datasets = []
|
479 |
-
|
480 |
-
# for _ in range(num_clients):
|
481 |
-
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
482 |
-
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
483 |
-
# train_datasets.append(train_dataset)
|
484 |
-
# test_datasets.append(test_dataset)
|
485 |
-
|
486 |
-
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
487 |
-
|
488 |
-
# return train_datasets, test_datasets, data_collator
|
489 |
-
|
490 |
-
# def train(net, trainloader, epochs):
|
491 |
-
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
492 |
-
# net.train()
|
493 |
-
# for _ in range(epochs):
|
494 |
-
# for batch in trainloader:
|
495 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
496 |
-
# outputs = net(**batch)
|
497 |
-
# loss = outputs.loss
|
498 |
-
# loss.backward()
|
499 |
-
# optimizer.step()
|
500 |
-
# optimizer.zero_grad()
|
501 |
-
|
502 |
-
# def test(net, testloader):
|
503 |
-
# metric = load_metric("accuracy")
|
504 |
-
# net.eval()
|
505 |
-
# loss = 0
|
506 |
-
# for batch in testloader:
|
507 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
508 |
-
# with torch.no_grad():
|
509 |
-
# outputs = net(**batch)
|
510 |
-
# logits = outputs.logits
|
511 |
-
# loss += outputs.loss.item()
|
512 |
-
# predictions = torch.argmax(logits, dim=-1)
|
513 |
-
# metric.add_batch(predictions=predictions, references=batch["labels"])
|
514 |
-
# loss /= len(testloader)
|
515 |
-
# accuracy = metric.compute()["accuracy"]
|
516 |
-
# return loss, accuracy
|
517 |
-
|
518 |
-
# class CustomClient(fl.client.NumPyClient):
|
519 |
-
# def __init__(self, net, trainloader, testloader, client_id):
|
520 |
-
# self.net = net
|
521 |
-
# self.trainloader = trainloader
|
522 |
-
# self.testloader = testloader
|
523 |
-
# self.client_id = client_id
|
524 |
-
# self.losses = []
|
525 |
-
# self.accuracies = []
|
526 |
-
|
527 |
-
# def get_parameters(self, config):
|
528 |
-
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
529 |
-
|
530 |
-
# def set_parameters(self, parameters):
|
531 |
-
# params_dict = zip(self.net.state_dict().keys(), parameters)
|
532 |
-
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
533 |
-
# self.net.load_state_dict(state_dict, strict=True)
|
534 |
-
|
535 |
-
# def fit(self, parameters, config):
|
536 |
-
# self.set_parameters(parameters)
|
537 |
-
# train(self.net, self.trainloader, epochs=1)
|
538 |
-
# loss, accuracy = test(self.net, self.testloader)
|
539 |
-
# self.losses.append(loss)
|
540 |
-
# self.accuracies.append(accuracy)
|
541 |
-
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
542 |
-
|
543 |
-
# def evaluate(self, parameters, config):
|
544 |
-
# self.set_parameters(parameters)
|
545 |
-
# loss, accuracy = test(self.net, self.testloader)
|
546 |
-
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
547 |
-
|
548 |
-
# def plot_metrics(self, round_num):
|
549 |
-
# if self.losses and self.accuracies:
|
550 |
-
# st.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
551 |
-
# st.write(f"Loss: {self.losses[-1]:.4f}")
|
552 |
-
# st.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
553 |
-
|
554 |
-
# fig, ax1 = plt.subplots()
|
555 |
-
|
556 |
-
# ax2 = ax1.twinx()
|
557 |
-
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
|
558 |
-
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
|
559 |
|
560 |
-
# ax1.set_xlabel('Round')
|
561 |
-
# ax1.set_ylabel('Loss', color='g')
|
562 |
-
# ax2.set_ylabel('Accuracy', color='b')
|
563 |
|
564 |
-
#
|
565 |
-
# st.pyplot(fig)
|
566 |
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
|
572 |
-
|
573 |
-
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
574 |
|
575 |
-
|
|
|
|
|
|
|
576 |
|
577 |
-
|
578 |
-
# testloaders = []
|
579 |
-
# clients = []
|
580 |
|
581 |
-
|
582 |
-
|
583 |
|
584 |
-
|
585 |
-
|
|
|
586 |
|
587 |
-
|
588 |
-
|
589 |
-
# st.write("#### Test Dataset")
|
590 |
-
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
|
591 |
|
592 |
-
|
593 |
-
|
|
|
|
|
|
|
594 |
|
595 |
-
|
596 |
-
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
597 |
|
598 |
-
|
599 |
-
# testloaders.append(testloader)
|
600 |
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
-
|
611 |
-
|
612 |
-
# examples = [num_examples for num_examples, _ in metrics]
|
613 |
-
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
614 |
-
|
615 |
-
# strategy = fl.server.strategy.FedAvg(
|
616 |
-
# fraction_fit=1.0,
|
617 |
-
# fraction_evaluate=1.0,
|
618 |
-
# evaluate_metrics_aggregation_fn=weighted_average,
|
619 |
-
# )
|
620 |
-
|
621 |
-
# for round_num in range(NUM_ROUNDS):
|
622 |
-
# st.write(f"### Round {round_num + 1}")
|
623 |
-
|
624 |
-
# fl.simulation.start_simulation(
|
625 |
-
# client_fn=client_fn,
|
626 |
-
# num_clients=NUM_CLIENTS,
|
627 |
-
# config=fl.server.ServerConfig(num_rounds=1),
|
628 |
-
# strategy=strategy,
|
629 |
-
# client_resources={"num_cpus": 1, "num_gpus": 0},
|
630 |
-
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
631 |
-
# )
|
632 |
-
|
633 |
-
# for client in clients:
|
634 |
-
# client.plot_metrics(round_num + 1)
|
635 |
-
# st.write(" ")
|
636 |
-
|
637 |
-
# st.success(f"Training completed successfully!")
|
638 |
-
|
639 |
-
# # Display final metrics
|
640 |
-
# st.write("## Final Client Metrics")
|
641 |
-
# for client in clients:
|
642 |
-
# st.write(f"### Client {client.client_id}")
|
643 |
-
# st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
644 |
-
# st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
645 |
-
# client.plot_metrics(NUM_ROUNDS)
|
646 |
-
# st.write(" ")
|
647 |
-
|
648 |
-
# else:
|
649 |
-
# st.write("Click the 'Start Training' button to start the training process.")
|
650 |
-
|
651 |
-
# if __name__ == "__main__":
|
652 |
-
# main()
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
# # %%writefile app.py
|
660 |
-
|
661 |
-
# import streamlit as st
|
662 |
-
# import matplotlib.pyplot as plt
|
663 |
-
# import torch
|
664 |
-
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
665 |
-
# from datasets import load_dataset, Dataset
|
666 |
-
# from evaluate import load as load_metric
|
667 |
-
# from torch.utils.data import DataLoader
|
668 |
-
# import pandas as pd
|
669 |
-
# import random
|
670 |
-
# import warnings
|
671 |
-
# from collections import OrderedDict
|
672 |
-
# import flwr as fl
|
673 |
-
|
674 |
-
# DEVICE = torch.device("cpu")
|
675 |
-
|
676 |
-
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
677 |
-
# raw_datasets = load_dataset(dataset_name)
|
678 |
-
# raw_datasets = raw_datasets.shuffle(seed=42)
|
679 |
-
# del raw_datasets["unsupervised"]
|
680 |
-
|
681 |
-
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
682 |
-
|
683 |
-
# def tokenize_function(examples):
|
684 |
-
# return tokenizer(examples["text"], truncation=True)
|
685 |
-
|
686 |
-
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
687 |
-
# tokenized_datasets = tokenized_datasets.remove_columns("text")
|
688 |
-
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
689 |
-
|
690 |
-
# train_datasets = []
|
691 |
-
# test_datasets = []
|
692 |
-
|
693 |
-
# for _ in range(num_clients):
|
694 |
-
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
695 |
-
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
696 |
-
# train_datasets.append(train_dataset)
|
697 |
-
# test_datasets.append(test_dataset)
|
698 |
-
|
699 |
-
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
700 |
-
|
701 |
-
# return train_datasets, test_datasets, data_collator
|
702 |
-
|
703 |
-
# def train(net, trainloader, epochs):
|
704 |
-
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
705 |
-
# net.train()
|
706 |
-
# for _ in range(epochs):
|
707 |
-
# for batch in trainloader:
|
708 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
709 |
-
# outputs = net(**batch)
|
710 |
-
# loss = outputs.loss
|
711 |
-
# loss.backward()
|
712 |
-
# optimizer.step()
|
713 |
-
# optimizer.zero_grad()
|
714 |
-
|
715 |
-
# def test(net, testloader):
|
716 |
-
# metric = load_metric("accuracy")
|
717 |
-
# net.eval()
|
718 |
-
# loss = 0
|
719 |
-
# for batch in testloader:
|
720 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
721 |
-
# with torch.no_grad():
|
722 |
-
# outputs = net(**batch)
|
723 |
-
# logits = outputs.logits
|
724 |
-
# loss += outputs.loss.item()
|
725 |
-
# predictions = torch.argmax(logits, dim=-1)
|
726 |
-
# metric.add_batch(predictions=predictions, references=batch["labels"])
|
727 |
-
# loss /= len(testloader)
|
728 |
-
# accuracy = metric.compute()["accuracy"]
|
729 |
-
# return loss, accuracy
|
730 |
-
|
731 |
-
# class CustomClient(fl.client.NumPyClient):
|
732 |
-
# def __init__(self, net, trainloader, testloader, client_id):
|
733 |
-
# self.net = net
|
734 |
-
# self.trainloader = trainloader
|
735 |
-
# self.testloader = testloader
|
736 |
-
# self.client_id = client_id
|
737 |
-
# self.losses = []
|
738 |
-
# self.accuracies = []
|
739 |
-
|
740 |
-
# def get_parameters(self, config):
|
741 |
-
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
742 |
-
|
743 |
-
# def set_parameters(self, parameters):
|
744 |
-
# params_dict = zip(self.net.state_dict().keys(), parameters)
|
745 |
-
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
746 |
-
# self.net.load_state_dict(state_dict, strict=True)
|
747 |
-
|
748 |
-
# def fit(self, parameters, config):
|
749 |
-
# self.set_parameters(parameters)
|
750 |
-
# train(self.net, self.trainloader, epochs=1)
|
751 |
-
# loss, accuracy = test(self.net, self.testloader)
|
752 |
-
# self.losses.append(loss)
|
753 |
-
# self.accuracies.append(accuracy)
|
754 |
-
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
755 |
-
|
756 |
-
# def evaluate(self, parameters, config):
|
757 |
-
# self.set_parameters(parameters)
|
758 |
-
# loss, accuracy = test(self.net, self.testloader)
|
759 |
-
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
760 |
-
|
761 |
-
# def plot_metrics(self):
|
762 |
-
# fig, ax1 = plt.subplots()
|
763 |
-
|
764 |
-
# ax2 = ax1.twinx()
|
765 |
-
# ax1.plot(range(1, len(self.losses) + 1), self.losses, 'g-')
|
766 |
-
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, 'b-')
|
767 |
-
|
768 |
-
# ax1.set_xlabel('Round')
|
769 |
-
# ax1.set_ylabel('Loss', color='g')
|
770 |
-
# ax2.set_ylabel('Accuracy', color='b')
|
771 |
-
|
772 |
-
# plt.title(f'Client {self.client_id} Metrics')
|
773 |
-
# st.pyplot(fig)
|
774 |
-
|
775 |
-
# def main():
|
776 |
-
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
777 |
-
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
778 |
-
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
779 |
-
|
780 |
-
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
781 |
-
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
782 |
-
|
783 |
-
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
784 |
-
|
785 |
-
# trainloaders = []
|
786 |
-
# testloaders = []
|
787 |
-
# clients = []
|
788 |
-
|
789 |
-
# for i in range(NUM_CLIENTS):
|
790 |
-
# st.write(f"### Client {i+1} Datasets")
|
791 |
-
|
792 |
-
# train_df = pd.DataFrame(train_datasets[i])
|
793 |
-
# test_df = pd.DataFrame(test_datasets[i])
|
794 |
-
|
795 |
-
# st.write("#### Train Dataset")
|
796 |
-
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
|
797 |
-
# st.write("#### Test Dataset")
|
798 |
-
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
|
799 |
-
|
800 |
-
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
801 |
-
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
802 |
-
|
803 |
-
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
804 |
-
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
805 |
-
|
806 |
-
# trainloaders.append(trainloader)
|
807 |
-
# testloaders.append(testloader)
|
808 |
-
|
809 |
-
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
810 |
-
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
811 |
-
# clients.append(client)
|
812 |
-
|
813 |
-
# if st.button("Start Training"):
|
814 |
-
# def client_fn(cid):
|
815 |
-
# return clients[int(cid)]
|
816 |
-
|
817 |
-
# def weighted_average(metrics):
|
818 |
-
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
819 |
-
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
820 |
-
# examples = [num_examples for num_examples, _ in metrics]
|
821 |
-
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
822 |
-
|
823 |
-
# strategy = fl.server.strategy.FedAvg(
|
824 |
-
# fraction_fit=1.0,
|
825 |
-
# fraction_evaluate=1.0,
|
826 |
-
# evaluate_metrics_aggregation_fn=weighted_average,
|
827 |
-
# )
|
828 |
-
|
829 |
-
# fl.simulation.start_simulation(
|
830 |
-
# client_fn=client_fn,
|
831 |
-
# num_clients=NUM_CLIENTS,
|
832 |
-
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
|
833 |
-
# strategy=strategy,
|
834 |
-
# client_resources={"num_cpus": 1, "num_gpus": 0},
|
835 |
-
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
836 |
-
# )
|
837 |
-
|
838 |
-
# st.success(f"Training completed successfully!")
|
839 |
-
|
840 |
-
# for client in clients:
|
841 |
-
# st.write(f"### Client {client.client_id} Model Metrics")
|
842 |
-
# client.plot_metrics()
|
843 |
-
|
844 |
-
# else:
|
845 |
-
# st.write("Click the 'Start Training' button to start the training process.")
|
846 |
-
|
847 |
-
# if __name__ == "__main__":
|
848 |
-
# main()
|
849 |
-
|
850 |
-
|
851 |
-
|
852 |
-
# 05/2024 # %%writefile app.py
|
853 |
-
|
854 |
-
# import streamlit as st
|
855 |
-
# import matplotlib.pyplot as plt
|
856 |
-
# import torch
|
857 |
-
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
858 |
-
# from datasets import load_dataset, Dataset
|
859 |
-
# from evaluate import load as load_metric
|
860 |
-
# from torch.utils.data import DataLoader
|
861 |
-
# import pandas as pd
|
862 |
-
# import random
|
863 |
-
# import warnings
|
864 |
-
# from collections import OrderedDict
|
865 |
-
# import flwr as fl
|
866 |
-
|
867 |
-
# DEVICE = torch.device("cpu")
|
868 |
-
|
869 |
-
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
870 |
-
# raw_datasets = load_dataset(dataset_name)
|
871 |
-
# raw_datasets = raw_datasets.shuffle(seed=42)
|
872 |
-
# del raw_datasets["unsupervised"]
|
873 |
-
|
874 |
-
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
875 |
-
|
876 |
-
# def tokenize_function(examples):
|
877 |
-
# return tokenizer(examples["text"], truncation=True)
|
878 |
-
|
879 |
-
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
880 |
-
# tokenized_datasets = tokenized_datasets.remove_columns("text")
|
881 |
-
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
882 |
-
|
883 |
-
# train_datasets = []
|
884 |
-
# test_datasets = []
|
885 |
-
|
886 |
-
# for _ in range(num_clients):
|
887 |
-
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
888 |
-
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
889 |
-
# train_datasets.append(train_dataset)
|
890 |
-
# test_datasets.append(test_dataset)
|
891 |
-
|
892 |
-
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
893 |
-
|
894 |
-
# return train_datasets, test_datasets, data_collator
|
895 |
-
|
896 |
-
# def train(net, trainloader, epochs):
|
897 |
-
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
898 |
-
# net.train()
|
899 |
-
# for _ in range(epochs):
|
900 |
-
# for batch in trainloader:
|
901 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
902 |
-
# outputs = net(**batch)
|
903 |
-
# loss = outputs.loss
|
904 |
-
# loss.backward()
|
905 |
-
# optimizer.step()
|
906 |
-
# optimizer.zero_grad()
|
907 |
-
|
908 |
-
# def test(net, testloader):
|
909 |
-
# metric = load_metric("accuracy")
|
910 |
-
# net.eval()
|
911 |
-
# loss = 0
|
912 |
-
# for batch in testloader:
|
913 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
914 |
-
# with torch.no_grad():
|
915 |
-
# outputs = net(**batch)
|
916 |
-
# logits = outputs.logits
|
917 |
-
# loss += outputs.loss.item()
|
918 |
-
# predictions = torch.argmax(logits, dim=-1)
|
919 |
-
# metric.add_batch(predictions=predictions, references=batch["labels"])
|
920 |
-
# loss /= len(testloader)
|
921 |
-
# accuracy = metric.compute()["accuracy"]
|
922 |
-
# return loss, accuracy
|
923 |
-
|
924 |
-
# class CustomClient(fl.client.NumPyClient):
|
925 |
-
# def __init__(self, net, trainloader, testloader):
|
926 |
-
# self.net = net
|
927 |
-
# self.trainloader = trainloader
|
928 |
-
# self.testloader = testloader
|
929 |
-
|
930 |
-
# def get_parameters(self, config):
|
931 |
-
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
932 |
-
|
933 |
-
# def set_parameters(self, parameters):
|
934 |
-
# params_dict = zip(self.net.state_dict().keys(), parameters)
|
935 |
-
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
936 |
-
# self.net.load_state_dict(state_dict, strict=True)
|
937 |
-
|
938 |
-
# def fit(self, parameters, config):
|
939 |
-
# self.set_parameters(parameters)
|
940 |
-
# train(self.net, self.trainloader, epochs=1)
|
941 |
-
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
942 |
-
|
943 |
-
# def evaluate(self, parameters, config):
|
944 |
-
# self.set_parameters(parameters)
|
945 |
-
# loss, accuracy = test(self.net, self.testloader)
|
946 |
-
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
947 |
-
|
948 |
-
# def main():
|
949 |
-
# st.write("## Federated Learning with Flower and Dynamic Models and Datasets for Mobile Devices")
|
950 |
-
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
951 |
-
# model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])
|
952 |
-
|
953 |
-
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
954 |
-
|
955 |
-
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
956 |
-
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
957 |
-
|
958 |
-
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
959 |
-
|
960 |
-
# trainloaders = []
|
961 |
-
# testloaders = []
|
962 |
-
|
963 |
-
# for i in range(NUM_CLIENTS):
|
964 |
-
# st.write(f"### Client {i+1} Datasets")
|
965 |
-
|
966 |
-
# train_df = pd.DataFrame(train_datasets[i])
|
967 |
-
# test_df = pd.DataFrame(test_datasets[i])
|
968 |
-
|
969 |
-
# st.write("#### Train Dataset")
|
970 |
-
# edited_train_df = st.experimental_data_editor(train_df, key=f"train_{i}")
|
971 |
-
# st.write("#### Test Dataset")
|
972 |
-
# edited_test_df = st.experimental_data_editor(test_df, key=f"test_{i}")
|
973 |
-
|
974 |
-
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
975 |
-
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
976 |
-
|
977 |
-
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
978 |
-
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
979 |
-
|
980 |
-
# trainloaders.append(trainloader)
|
981 |
-
# testloaders.append(testloader)
|
982 |
-
|
983 |
-
# if st.button("Start Training"):
|
984 |
-
# round_losses = []
|
985 |
-
# round_accuracies = []
|
986 |
-
|
987 |
-
# clients = [CustomClient(net, trainloaders[i], testloaders[i]) for i in range(NUM_CLIENTS)]
|
988 |
-
|
989 |
-
# def client_fn(cid):
|
990 |
-
# return clients[int(cid)]
|
991 |
-
|
992 |
-
# def weighted_average(metrics):
|
993 |
-
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
994 |
-
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
995 |
-
# examples = [num_examples for num_examples, _ in metrics]
|
996 |
-
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
997 |
-
|
998 |
-
# strategy = fl.server.strategy.FedAvg(
|
999 |
-
# fraction_fit=1.0,
|
1000 |
-
# fraction_evaluate=1.0,
|
1001 |
-
# evaluate_metrics_aggregation_fn=weighted_average,
|
1002 |
-
# )
|
1003 |
-
|
1004 |
-
# fl.simulation.start_simulation(
|
1005 |
-
# client_fn=client_fn,
|
1006 |
-
# num_clients=NUM_CLIENTS,
|
1007 |
-
# config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
|
1008 |
-
# strategy=strategy,
|
1009 |
-
# client_resources={"num_cpus": 1, "num_gpus": 0},
|
1010 |
-
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
1011 |
-
# )
|
1012 |
-
|
1013 |
-
# st.success(f"Training completed successfully!")
|
1014 |
-
|
1015 |
-
# else:
|
1016 |
-
# st.write("Click the 'Start Training' button to start the training process.")
|
1017 |
-
|
1018 |
-
# if __name__ == "__main__":
|
1019 |
-
# main()
|
1020 |
-
|
1021 |
-
|
1022 |
-
|
1023 |
-
##ORIGINAL###
|
1024 |
-
|
1025 |
-
|
1026 |
-
# # %%writefile app.py
|
1027 |
-
|
1028 |
-
# import streamlit as st
|
1029 |
-
# import matplotlib.pyplot as plt
|
1030 |
-
# import torch
|
1031 |
-
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
1032 |
-
# from datasets import load_dataset
|
1033 |
-
# from evaluate import load as load_metric
|
1034 |
-
# from torch.utils.data import DataLoader
|
1035 |
-
# import random
|
1036 |
-
|
1037 |
-
# DEVICE = torch.device("cpu")
|
1038 |
-
# NUM_ROUNDS = 3
|
1039 |
-
|
1040 |
-
|
1041 |
-
|
1042 |
-
# def load_data(dataset_name):
|
1043 |
-
# raw_datasets = load_dataset(dataset_name)
|
1044 |
-
# raw_datasets = raw_datasets.shuffle(seed=42)
|
1045 |
-
# del raw_datasets["unsupervised"]
|
1046 |
-
|
1047 |
-
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
1048 |
-
|
1049 |
-
# def tokenize_function(examples):
|
1050 |
-
# return tokenizer(examples["text"], truncation=True)
|
1051 |
-
|
1052 |
-
# train_population = random.sample(range(len(raw_datasets["train"])), 20)
|
1053 |
-
# test_population = random.sample(range(len(raw_datasets["test"])), 20)
|
1054 |
-
|
1055 |
-
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
1056 |
-
# tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
|
1057 |
-
# tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)
|
1058 |
-
|
1059 |
-
# tokenized_datasets = tokenized_datasets.remove_columns("text")
|
1060 |
-
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
1061 |
-
|
1062 |
-
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
1063 |
-
# trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
|
1064 |
-
# testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)
|
1065 |
-
|
1066 |
-
# return trainloader, testloader
|
1067 |
-
|
1068 |
-
# def train(net, trainloader, epochs):
|
1069 |
-
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
1070 |
-
# net.train()
|
1071 |
-
# for _ in range(epochs):
|
1072 |
-
# for batch in trainloader:
|
1073 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
1074 |
-
# outputs = net(**batch)
|
1075 |
-
# loss = outputs.loss
|
1076 |
-
# loss.backward()
|
1077 |
-
# optimizer.step()
|
1078 |
-
# optimizer.zero_grad()
|
1079 |
-
|
1080 |
-
# def test(net, testloader):
|
1081 |
-
# metric = load_metric("accuracy")
|
1082 |
-
# loss = 0
|
1083 |
-
# net.eval()
|
1084 |
-
# for batch in testloader:
|
1085 |
-
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
1086 |
-
# with torch.no_grad():
|
1087 |
-
# outputs = net(**batch)
|
1088 |
-
# logits = outputs.logits
|
1089 |
-
# loss += outputs.loss.item()
|
1090 |
-
# predictions = torch.argmax(logits, dim=-1)
|
1091 |
-
# metric.add_batch(predictions=predictions, references=batch["labels"])
|
1092 |
-
# loss /= len(testloader.dataset)
|
1093 |
-
# accuracy = metric.compute()["accuracy"]
|
1094 |
-
# return loss, accuracy
|
1095 |
-
|
1096 |
-
|
1097 |
-
|
1098 |
-
|
1099 |
-
|
1100 |
-
# from transformers import Wav2Vec2Processor, HubertForSequenceClassification
|
1101 |
-
# import torch
|
1102 |
-
|
1103 |
-
|
1104 |
-
# def main():
|
1105 |
-
# st.write("## Federated Learning with dynamic models and datasets for mobile devices")
|
1106 |
-
# dataset_name = st.selectbox("Dataset", ["imdb","audio_instruction_task", "amazon_polarity", "ag_news"])
|
1107 |
-
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
1108 |
-
|
1109 |
-
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
1110 |
-
# # processor = Wav2Vec2Processor.from_pretrained(model_name)
|
1111 |
-
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
1112 |
-
|
1113 |
-
# # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
|
1114 |
-
# # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
1115 |
-
|
1116 |
-
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
1117 |
-
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
1118 |
-
|
1119 |
-
# trainloader, testloader = load_data(dataset_name)
|
1120 |
-
|
1121 |
-
# if st.button("Start Training"):
|
1122 |
-
# round_losses = []
|
1123 |
-
# round_accuracies = [] # Store accuracy values for each round
|
1124 |
-
# for round_num in range(1, NUM_ROUNDS + 1):
|
1125 |
-
# st.write(f"## Round {round_num}")
|
1126 |
-
|
1127 |
-
# st.write("### Training Metrics for Each Client")
|
1128 |
-
# for client in range(1, NUM_CLIENTS + 1):
|
1129 |
-
# client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics
|
1130 |
-
# st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")
|
1131 |
-
|
1132 |
-
# st.write("### Accuracy Over Rounds")
|
1133 |
-
# round_accuracies.append(client_accuracy) # Append the accuracy for this round
|
1134 |
-
# plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds
|
1135 |
-
# plt.xlabel("Round")
|
1136 |
-
# plt.ylabel("Accuracy")
|
1137 |
-
# plt.title("Accuracy Over Rounds")
|
1138 |
-
# st.pyplot()
|
1139 |
-
|
1140 |
-
# st.write("### Loss Over Rounds")
|
1141 |
-
# loss_value = random.random() # Placeholder for loss values
|
1142 |
-
# round_losses.append(loss_value)
|
1143 |
-
# rounds = list(range(1, round_num + 1))
|
1144 |
-
# plt.plot(rounds, round_losses)
|
1145 |
-
# plt.xlabel("Round")
|
1146 |
-
# plt.ylabel("Loss")
|
1147 |
-
# plt.title("Loss Over Rounds")
|
1148 |
-
# st.pyplot()
|
1149 |
-
|
1150 |
-
# st.success(f"Round {round_num} completed successfully!")
|
1151 |
-
|
1152 |
-
# else:
|
1153 |
-
# st.write("Click the 'Start Training' button to start the training process.")
|
1154 |
-
|
1155 |
-
# if __name__ == "__main__":
|
1156 |
-
# main()
|
1157 |
-
###ORIGINAL##
|
1158 |
-
|
1159 |
-
|
1160 |
-
|
1161 |
-
|
1162 |
-
# ########################TinyLLM####################################
|
1163 |
-
|
1164 |
-
# import torch
|
1165 |
-
# import torch.nn as nn
|
1166 |
-
# from torch.nn import functional as F
|
1167 |
-
|
1168 |
-
# # hyperparameters
|
1169 |
-
# batch_size = 64 # how many independent sequences will we process in parallel?
|
1170 |
-
# block_size = 256 # what is the maximum context length for predictions?
|
1171 |
-
# max_iters = 5000
|
1172 |
-
# eval_interval = 500
|
1173 |
-
# learning_rate = 3e-4
|
1174 |
-
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
1175 |
-
# eval_iters = 200
|
1176 |
-
# n_embd = 384
|
1177 |
-
# n_head = 6
|
1178 |
-
# n_layer = 6
|
1179 |
-
# dropout = 0.2
|
1180 |
-
# # ------------
|
1181 |
-
|
1182 |
-
# torch.manual_seed(1337)
|
1183 |
-
|
1184 |
-
# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
|
1185 |
-
# with open('input.txt', 'r', encoding='utf-8') as f:
|
1186 |
-
# text = f.read()
|
1187 |
-
|
1188 |
-
# # here are all the unique characters that occur in this text
|
1189 |
-
# chars = sorted(list(set(text)))
|
1190 |
-
# vocab_size = len(chars)
|
1191 |
-
# # create a mapping from characters to integers
|
1192 |
-
# stoi = { ch:i for i,ch in enumerate(chars) }
|
1193 |
-
# itos = { i:ch for i,ch in enumerate(chars) }
|
1194 |
-
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
|
1195 |
-
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string
|
1196 |
-
|
1197 |
-
# # Train and test splits
|
1198 |
-
# data = torch.tensor(encode(text), dtype=torch.long)
|
1199 |
-
# n = int(0.9*len(data)) # first 90% will be train, rest val
|
1200 |
-
# train_data = data[:n]
|
1201 |
-
# val_data = data[n:]
|
1202 |
-
|
1203 |
-
# # data loading
|
1204 |
-
# def get_batch(split):
|
1205 |
-
# # generate a small batch of data of inputs x and targets y
|
1206 |
-
# data = train_data if split == 'train' else val_data
|
1207 |
-
# ix = torch.randint(len(data) - block_size, (batch_size,))
|
1208 |
-
# x = torch.stack([data[i:i+block_size] for i in ix])
|
1209 |
-
# y = torch.stack([data[i+1:i+block_size+1] for i in ix])
|
1210 |
-
# x, y = x.to(device), y.to(device)
|
1211 |
-
# return x, y
|
1212 |
-
|
1213 |
-
# @torch.no_grad()
|
1214 |
-
# def estimate_loss():
|
1215 |
-
# out = {}
|
1216 |
-
# model.eval()
|
1217 |
-
# for split in ['train', 'val']:
|
1218 |
-
# losses = torch.zeros(eval_iters)
|
1219 |
-
# for k in range(eval_iters):
|
1220 |
-
# X, Y = get_batch(split)
|
1221 |
-
# logits, loss = model(X, Y)
|
1222 |
-
# losses[k] = loss.item()
|
1223 |
-
# out[split] = losses.mean()
|
1224 |
-
# model.train()
|
1225 |
-
# return out
|
1226 |
-
|
1227 |
-
# class Head(nn.Module):
|
1228 |
-
# """ one head of self-attention """
|
1229 |
-
|
1230 |
-
# def __init__(self, head_size):
|
1231 |
-
# super().__init__()
|
1232 |
-
# self.key = nn.Linear(n_embd, head_size, bias=False)
|
1233 |
-
# self.query = nn.Linear(n_embd, head_size, bias=False)
|
1234 |
-
# self.value = nn.Linear(n_embd, head_size, bias=False)
|
1235 |
-
# self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
|
1236 |
-
|
1237 |
-
# self.dropout = nn.Dropout(dropout)
|
1238 |
-
|
1239 |
-
# def forward(self, x):
|
1240 |
-
# # input of size (batch, time-step, channels)
|
1241 |
-
# # output of size (batch, time-step, head size)
|
1242 |
-
# B,T,C = x.shape
|
1243 |
-
# k = self.key(x) # (B,T,hs)
|
1244 |
-
# q = self.query(x) # (B,T,hs)
|
1245 |
-
# # compute attention scores ("affinities")
|
1246 |
-
# wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
|
1247 |
-
# wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
|
1248 |
-
# wei = F.softmax(wei, dim=-1) # (B, T, T)
|
1249 |
-
# wei = self.dropout(wei)
|
1250 |
-
# # perform the weighted aggregation of the values
|
1251 |
-
# v = self.value(x) # (B,T,hs)
|
1252 |
-
# out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
|
1253 |
-
# return out
|
1254 |
-
|
1255 |
-
# class MultiHeadAttention(nn.Module):
|
1256 |
-
# """ multiple heads of self-attention in parallel """
|
1257 |
-
|
1258 |
-
# def __init__(self, num_heads, head_size):
|
1259 |
-
# super().__init__()
|
1260 |
-
# self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
|
1261 |
-
# self.proj = nn.Linear(head_size * num_heads, n_embd)
|
1262 |
-
# self.dropout = nn.Dropout(dropout)
|
1263 |
-
|
1264 |
-
# def forward(self, x):
|
1265 |
-
# out = torch.cat([h(x) for h in self.heads], dim=-1)
|
1266 |
-
# out = self.dropout(self.proj(out))
|
1267 |
-
# return out
|
1268 |
-
|
1269 |
-
# class FeedFoward(nn.Module):
|
1270 |
-
# """ a simple linear layer followed by a non-linearity """
|
1271 |
-
|
1272 |
-
# def __init__(self, n_embd):
|
1273 |
-
# super().__init__()
|
1274 |
-
# self.net = nn.Sequential(
|
1275 |
-
# nn.Linear(n_embd, 4 * n_embd),
|
1276 |
-
# nn.ReLU(),
|
1277 |
-
# nn.Linear(4 * n_embd, n_embd),
|
1278 |
-
# nn.Dropout(dropout),
|
1279 |
-
# )
|
1280 |
-
|
1281 |
-
# def forward(self, x):
|
1282 |
-
# return self.net(x)
|
1283 |
-
|
1284 |
-
# class Block(nn.Module):
|
1285 |
-
# """ Transformer block: communication followed by computation """
|
1286 |
-
|
1287 |
-
# def __init__(self, n_embd, n_head):
|
1288 |
-
# # n_embd: embedding dimension, n_head: the number of heads we'd like
|
1289 |
-
# super().__init__()
|
1290 |
-
# head_size = n_embd // n_head
|
1291 |
-
# self.sa = MultiHeadAttention(n_head, head_size)
|
1292 |
-
# self.ffwd = FeedFoward(n_embd)
|
1293 |
-
# self.ln1 = nn.LayerNorm(n_embd)
|
1294 |
-
# self.ln2 = nn.LayerNorm(n_embd)
|
1295 |
-
|
1296 |
-
# def forward(self, x):
|
1297 |
-
# x = x + self.sa(self.ln1(x))
|
1298 |
-
# x = x + self.ffwd(self.ln2(x))
|
1299 |
-
# return x
|
1300 |
-
|
1301 |
-
# class GPTLanguageModel(nn.Module):
|
1302 |
-
|
1303 |
-
# def __init__(self):
|
1304 |
-
# super().__init__()
|
1305 |
-
# # each token directly reads off the logits for the next token from a lookup table
|
1306 |
-
# self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
|
1307 |
-
# self.position_embedding_table = nn.Embedding(block_size, n_embd)
|
1308 |
-
# self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
|
1309 |
-
# self.ln_f = nn.LayerNorm(n_embd) # final layer norm
|
1310 |
-
# self.lm_head = nn.Linear(n_embd, vocab_size)
|
1311 |
-
|
1312 |
-
# # better init, not covered in the original GPT video, but important, will cover in followup video
|
1313 |
-
# self.apply(self._init_weights)
|
1314 |
-
|
1315 |
-
# def _init_weights(self, module):
|
1316 |
-
# if isinstance(module, nn.Linear):
|
1317 |
-
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
1318 |
-
# if module.bias is not None:
|
1319 |
-
# torch.nn.init.zeros_(module.bias)
|
1320 |
-
# elif isinstance(module, nn.Embedding):
|
1321 |
-
# torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
|
1322 |
-
|
1323 |
-
# def forward(self, idx, targets=None):
|
1324 |
-
# B, T = idx.shape
|
1325 |
-
|
1326 |
-
# # idx and targets are both (B,T) tensor of integers
|
1327 |
-
# tok_emb = self.token_embedding_table(idx) # (B,T,C)
|
1328 |
-
# pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
|
1329 |
-
# x = tok_emb + pos_emb # (B,T,C)
|
1330 |
-
# x = self.blocks(x) # (B,T,C)
|
1331 |
-
# x = self.ln_f(x) # (B,T,C)
|
1332 |
-
# logits = self.lm_head(x) # (B,T,vocab_size)
|
1333 |
-
|
1334 |
-
# if targets is None:
|
1335 |
-
# loss = None
|
1336 |
-
# else:
|
1337 |
-
# B, T, C = logits.shape
|
1338 |
-
# logits = logits.view(B*T, C)
|
1339 |
-
# targets = targets.view(B*T)
|
1340 |
-
# loss = F.cross_entropy(logits, targets)
|
1341 |
-
|
1342 |
-
# return logits, loss
|
1343 |
-
|
1344 |
-
# def generate(self, idx, max_new_tokens):
|
1345 |
-
# # idx is (B, T) array of indices in the current context
|
1346 |
-
# for _ in range(max_new_tokens):
|
1347 |
-
# # crop idx to the last block_size tokens
|
1348 |
-
# idx_cond = idx[:, -block_size:]
|
1349 |
-
# # get the predictions
|
1350 |
-
# logits, loss = self(idx_cond)
|
1351 |
-
# # focus only on the last time step
|
1352 |
-
# logits = logits[:, -1, :] # becomes (B, C)
|
1353 |
-
# # apply softmax to get probabilities
|
1354 |
-
# probs = F.softmax(logits, dim=-1) # (B, C)
|
1355 |
-
# # sample from the distribution
|
1356 |
-
# idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
1357 |
-
# # append sampled index to the running sequence
|
1358 |
-
# idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
|
1359 |
-
# return idx
|
1360 |
-
|
1361 |
-
# model = GPTLanguageModel()
|
1362 |
-
# m = model.to(device)
|
1363 |
-
# # print the number of parameters in the model
|
1364 |
-
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')
|
1365 |
-
|
1366 |
-
# # create a PyTorch optimizer
|
1367 |
-
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
|
1368 |
-
|
1369 |
-
# for iter in range(max_iters):
|
1370 |
-
|
1371 |
-
# # every once in a while evaluate the loss on train and val sets
|
1372 |
-
# if iter % eval_interval == 0 or iter == max_iters - 1:
|
1373 |
-
# losses = estimate_loss()
|
1374 |
-
# print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")
|
1375 |
-
|
1376 |
-
# # sample a batch of data
|
1377 |
-
# xb, yb = get_batch('train')
|
1378 |
-
|
1379 |
-
# # evaluate the loss
|
1380 |
-
# logits, loss = model(xb, yb)
|
1381 |
-
# optimizer.zero_grad(set_to_none=True)
|
1382 |
-
# loss.backward()
|
1383 |
-
# optimizer.step()
|
1384 |
-
|
1385 |
-
# # generate from the model
|
1386 |
-
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
|
1387 |
-
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
|
1388 |
-
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))
|
1389 |
-
|
1390 |
-
|
1391 |
-
|
1392 |
-
|
1393 |
-
|
1394 |
-
|
1395 |
-
|
1396 |
-
|
1397 |
-
|
1398 |
-
|
1399 |
-
|
1400 |
-
# ########################TinyLLM##################################
|
1401 |
-
|
1402 |
-
|
1403 |
-
|
1404 |
-
# def main():
|
1405 |
-
# st.write("## Audio Classification with HuBERT")
|
1406 |
-
# dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
|
1407 |
-
# model_name = "facebook/hubert-base-ls960"
|
1408 |
-
|
1409 |
-
# processor = Wav2Vec2Processor.from_pretrained(model_name)
|
1410 |
-
# net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
1411 |
-
|
1412 |
-
# train_dataset, test_dataset = load_data(dataset_name)
|
1413 |
-
# # Further implementation needed for actual data preparation and training loops
|
1414 |
-
|
1415 |
-
# st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")
|
1416 |
-
|
1417 |
-
# if __name__ == "__main__":
|
1418 |
-
# main()
|
1419 |
-
|
1420 |
-
# from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
|
1421 |
-
# import torch
|
1422 |
-
# import soundfile as sf
|
1423 |
|
1424 |
-
|
1425 |
-
# # Load an audio file, return waveform and sampling rate
|
1426 |
-
# waveform, sample_rate = sf.read(file_path)
|
1427 |
-
# return waveform, sample_rate
|
1428 |
|
1429 |
-
# def prepare_dataset(data_paths):
|
1430 |
-
# # Dummy function to simulate loading and processing a dataset
|
1431 |
-
# # Replace this with actual data loading and processing logic
|
1432 |
-
# features = []
|
1433 |
-
# labels = []
|
1434 |
-
# for path, label in data_paths:
|
1435 |
-
# waveform, sr = load_audio(path)
|
1436 |
-
# input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
|
1437 |
-
# features.append(input_values)
|
1438 |
-
# labels.append(label)
|
1439 |
-
# return torch.cat(features, dim=0), torch.tensor(labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# # %%writefile app.py
|
2 |
|
3 |
# import streamlit as st
|
|
|
11 |
# import random
|
12 |
# from collections import OrderedDict
|
13 |
# import flwr as fl
|
|
|
|
|
14 |
|
15 |
# DEVICE = torch.device("cpu")
|
16 |
|
|
|
40 |
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
41 |
|
42 |
# return train_datasets, test_datasets, data_collator
|
43 |
+
# def read_log_file():
|
44 |
+
# with open("./log.txt", "r") as file:
|
45 |
+
# return file.read()
|
46 |
# def train(net, trainloader, epochs):
|
47 |
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
48 |
# net.train()
|
|
|
89 |
# self.net.load_state_dict(state_dict, strict=True)
|
90 |
|
91 |
# def fit(self, parameters, config):
|
|
|
92 |
# self.set_parameters(parameters)
|
93 |
# train(self.net, self.trainloader, epochs=1)
|
94 |
# loss, accuracy = test(self.net, self.testloader)
|
95 |
# self.losses.append(loss)
|
96 |
# self.accuracies.append(accuracy)
|
|
|
97 |
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
98 |
|
99 |
# def evaluate(self, parameters, config):
|
|
|
100 |
# self.set_parameters(parameters)
|
101 |
# loss, accuracy = test(self.net, self.testloader)
|
|
|
102 |
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
103 |
|
104 |
# def plot_metrics(self, round_num, plot_placeholder):
|
|
|
124 |
# fig.tight_layout()
|
125 |
# plot_placeholder.pyplot(fig)
|
126 |
|
|
|
|
|
|
|
|
|
127 |
# def main():
|
128 |
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
129 |
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
130 |
+
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
131 |
|
132 |
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
133 |
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
|
|
181 |
# for round_num in range(NUM_ROUNDS):
|
182 |
# st.write(f"### Round {round_num + 1}")
|
183 |
# plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
184 |
+
# fl.common.logger.configure(identifier="myFlowerExperiment", filename="./log.txt")
|
185 |
+
|
186 |
# fl.simulation.start_simulation(
|
187 |
# client_fn=client_fn,
|
188 |
# num_clients=NUM_CLIENTS,
|
|
|
193 |
# )
|
194 |
|
195 |
# for i, client in enumerate(clients):
|
196 |
+
# st.markdown("LOGS : "+ read_log_file())
|
197 |
# client.plot_metrics(round_num + 1, plot_placeholders[i])
|
198 |
# st.write(" ")
|
199 |
|
|
|
208 |
# client.plot_metrics(NUM_ROUNDS, st.empty())
|
209 |
# st.write(" ")
|
210 |
|
|
|
|
|
|
|
|
|
211 |
# else:
|
212 |
# st.write("Click the 'Start Training' button to start the training process.")
|
213 |
|
214 |
# if __name__ == "__main__":
|
215 |
# main()
|
216 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
|
|
|
|
|
|
218 |
|
219 |
+
# %%writefile app.py
|
|
|
220 |
|
221 |
+
import streamlit as st
|
222 |
+
import matplotlib.pyplot as plt
|
223 |
+
import torch
|
224 |
+
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
225 |
+
from datasets import load_dataset, Dataset
|
226 |
+
from evaluate import load as load_metric
|
227 |
+
from torch.utils.data import DataLoader
|
228 |
+
import pandas as pd
|
229 |
+
import random
|
230 |
+
from collections import OrderedDict
|
231 |
+
import flwr as fl
|
232 |
+
from logging import INFO, DEBUG
|
233 |
+
from flwr.common.logger import log
|
234 |
|
235 |
+
DEVICE = torch.device("cpu")
|
|
|
236 |
|
237 |
+
def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
238 |
+
raw_datasets = load_dataset(dataset_name)
|
239 |
+
raw_datasets = raw_datasets.shuffle(seed=42)
|
240 |
+
del raw_datasets["unsupervised"]
|
241 |
|
242 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
|
243 |
|
244 |
+
def tokenize_function(examples):
|
245 |
+
return tokenizer(examples["text"], truncation=True)
|
246 |
|
247 |
+
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
248 |
+
tokenized_datasets = tokenized_datasets.remove_columns("text")
|
249 |
+
tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
250 |
|
251 |
+
train_datasets = []
|
252 |
+
test_datasets = []
|
|
|
|
|
253 |
|
254 |
+
for _ in range(num_clients):
|
255 |
+
train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
256 |
+
test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
257 |
+
train_datasets.append(train_dataset)
|
258 |
+
test_datasets.append(test_dataset)
|
259 |
|
260 |
+
data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
|
|
261 |
|
262 |
+
return train_datasets, test_datasets, data_collator, raw_datasets
|
|
|
263 |
|
264 |
+
def train(net, trainloader, epochs):
|
265 |
+
optimizer = AdamW(net.parameters(), lr=5e-5)
|
266 |
+
net.train()
|
267 |
+
for _ in range(epochs):
|
268 |
+
for batch in trainloader:
|
269 |
+
batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
270 |
+
outputs = net(**batch)
|
271 |
+
loss = outputs.loss
|
272 |
+
loss.backward()
|
273 |
+
optimizer.step()
|
274 |
+
optimizer.zero_grad()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
def test(net, testloader
|
|
|
|
|
|
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|