Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# %%writefile app.py
|
2 |
|
3 |
import streamlit as st
|
@@ -11,6 +224,8 @@ import pandas as pd
|
|
11 |
import random
|
12 |
from collections import OrderedDict
|
13 |
import flwr as fl
|
|
|
|
|
14 |
|
15 |
DEVICE = torch.device("cpu")
|
16 |
|
@@ -87,16 +302,20 @@ class CustomClient(fl.client.NumPyClient):
|
|
87 |
self.net.load_state_dict(state_dict, strict=True)
|
88 |
|
89 |
def fit(self, parameters, config):
|
|
|
90 |
self.set_parameters(parameters)
|
91 |
train(self.net, self.trainloader, epochs=1)
|
92 |
loss, accuracy = test(self.net, self.testloader)
|
93 |
self.losses.append(loss)
|
94 |
self.accuracies.append(accuracy)
|
|
|
95 |
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
96 |
|
97 |
def evaluate(self, parameters, config):
|
|
|
98 |
self.set_parameters(parameters)
|
99 |
loss, accuracy = test(self.net, self.testloader)
|
|
|
100 |
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
101 |
|
102 |
def plot_metrics(self, round_num, plot_placeholder):
|
@@ -122,10 +341,14 @@ class CustomClient(fl.client.NumPyClient):
|
|
122 |
fig.tight_layout()
|
123 |
plot_placeholder.pyplot(fig)
|
124 |
|
|
|
|
|
|
|
|
|
125 |
def main():
|
126 |
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
127 |
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
128 |
-
model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
129 |
|
130 |
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
131 |
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
@@ -204,13 +427,17 @@ def main():
|
|
204 |
client.plot_metrics(NUM_ROUNDS, st.empty())
|
205 |
st.write(" ")
|
206 |
|
|
|
|
|
|
|
|
|
207 |
else:
|
208 |
st.write("Click the 'Start Training' button to start the training process.")
|
209 |
|
210 |
if __name__ == "__main__":
|
211 |
main()
|
212 |
|
213 |
-
|
214 |
|
215 |
# # %%writefile app.py
|
216 |
|
|
|
1 |
+
# # %%writefile app.py
|
2 |
+
|
3 |
+
# import streamlit as st
|
4 |
+
# import matplotlib.pyplot as plt
|
5 |
+
# import torch
|
6 |
+
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
|
7 |
+
# from datasets import load_dataset, Dataset
|
8 |
+
# from evaluate import load as load_metric
|
9 |
+
# from torch.utils.data import DataLoader
|
10 |
+
# import pandas as pd
|
11 |
+
# import random
|
12 |
+
# from collections import OrderedDict
|
13 |
+
# import flwr as fl
|
14 |
+
|
15 |
+
# DEVICE = torch.device("cpu")
|
16 |
+
|
17 |
+
# def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
|
18 |
+
# raw_datasets = load_dataset(dataset_name)
|
19 |
+
# raw_datasets = raw_datasets.shuffle(seed=42)
|
20 |
+
# del raw_datasets["unsupervised"]
|
21 |
+
|
22 |
+
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
23 |
+
|
24 |
+
# def tokenize_function(examples):
|
25 |
+
# return tokenizer(examples["text"], truncation=True)
|
26 |
+
|
27 |
+
# tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
|
28 |
+
# tokenized_datasets = tokenized_datasets.remove_columns("text")
|
29 |
+
# tokenized_datasets = tokenized_datasets.rename_column("label", "labels")
|
30 |
+
|
31 |
+
# train_datasets = []
|
32 |
+
# test_datasets = []
|
33 |
+
|
34 |
+
# for _ in range(num_clients):
|
35 |
+
# train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
|
36 |
+
# test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
|
37 |
+
# train_datasets.append(train_dataset)
|
38 |
+
# test_datasets.append(test_dataset)
|
39 |
+
|
40 |
+
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
41 |
+
|
42 |
+
# return train_datasets, test_datasets, data_collator
|
43 |
+
|
44 |
+
# def train(net, trainloader, epochs):
|
45 |
+
# optimizer = AdamW(net.parameters(), lr=5e-5)
|
46 |
+
# net.train()
|
47 |
+
# for _ in range(epochs):
|
48 |
+
# for batch in trainloader:
|
49 |
+
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
50 |
+
# outputs = net(**batch)
|
51 |
+
# loss = outputs.loss
|
52 |
+
# loss.backward()
|
53 |
+
# optimizer.step()
|
54 |
+
# optimizer.zero_grad()
|
55 |
+
|
56 |
+
# def test(net, testloader):
|
57 |
+
# metric = load_metric("accuracy")
|
58 |
+
# net.eval()
|
59 |
+
# loss = 0
|
60 |
+
# for batch in testloader:
|
61 |
+
# batch = {k: v.to(DEVICE) for k, v in batch.items()}
|
62 |
+
# with torch.no_grad():
|
63 |
+
# outputs = net(**batch)
|
64 |
+
# logits = outputs.logits
|
65 |
+
# loss += outputs.loss.item()
|
66 |
+
# predictions = torch.argmax(logits, dim=-1)
|
67 |
+
# metric.add_batch(predictions=predictions, references=batch["labels"])
|
68 |
+
# loss /= len(testloader)
|
69 |
+
# accuracy = metric.compute()["accuracy"]
|
70 |
+
# return loss, accuracy
|
71 |
+
|
72 |
+
# class CustomClient(fl.client.NumPyClient):
|
73 |
+
# def __init__(self, net, trainloader, testloader, client_id):
|
74 |
+
# self.net = net
|
75 |
+
# self.trainloader = trainloader
|
76 |
+
# self.testloader = testloader
|
77 |
+
# self.client_id = client_id
|
78 |
+
# self.losses = []
|
79 |
+
# self.accuracies = []
|
80 |
+
|
81 |
+
# def get_parameters(self, config):
|
82 |
+
# return [val.cpu().numpy() for _, val in self.net.state_dict().items()]
|
83 |
+
|
84 |
+
# def set_parameters(self, parameters):
|
85 |
+
# params_dict = zip(self.net.state_dict().keys(), parameters)
|
86 |
+
# state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
|
87 |
+
# self.net.load_state_dict(state_dict, strict=True)
|
88 |
+
|
89 |
+
# def fit(self, parameters, config):
|
90 |
+
# self.set_parameters(parameters)
|
91 |
+
# train(self.net, self.trainloader, epochs=1)
|
92 |
+
# loss, accuracy = test(self.net, self.testloader)
|
93 |
+
# self.losses.append(loss)
|
94 |
+
# self.accuracies.append(accuracy)
|
95 |
+
# return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
96 |
+
|
97 |
+
# def evaluate(self, parameters, config):
|
98 |
+
# self.set_parameters(parameters)
|
99 |
+
# loss, accuracy = test(self.net, self.testloader)
|
100 |
+
# return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
101 |
+
|
102 |
+
# def plot_metrics(self, round_num, plot_placeholder):
|
103 |
+
# if self.losses and self.accuracies:
|
104 |
+
# plot_placeholder.write(f"#### Client {self.client_id} Metrics for Round {round_num}")
|
105 |
+
# plot_placeholder.write(f"Loss: {self.losses[-1]:.4f}")
|
106 |
+
# plot_placeholder.write(f"Accuracy: {self.accuracies[-1]:.4f}")
|
107 |
+
|
108 |
+
# fig, ax1 = plt.subplots()
|
109 |
+
|
110 |
+
# color = 'tab:red'
|
111 |
+
# ax1.set_xlabel('Round')
|
112 |
+
# ax1.set_ylabel('Loss', color=color)
|
113 |
+
# ax1.plot(range(1, len(self.losses) + 1), self.losses, color=color)
|
114 |
+
# ax1.tick_params(axis='y', labelcolor=color)
|
115 |
+
|
116 |
+
# ax2 = ax1.twinx() # instantiate a second axes that shares the same x-axis
|
117 |
+
# color = 'tab:blue'
|
118 |
+
# ax2.set_ylabel('Accuracy', color=color)
|
119 |
+
# ax2.plot(range(1, len(self.accuracies) + 1), self.accuracies, color=color)
|
120 |
+
# ax2.tick_params(axis='y', labelcolor=color)
|
121 |
+
|
122 |
+
# fig.tight_layout()
|
123 |
+
# plot_placeholder.pyplot(fig)
|
124 |
+
|
125 |
+
# def main():
|
126 |
+
# st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
127 |
+
# dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
128 |
+
# model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
129 |
+
|
130 |
+
# NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
131 |
+
# NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
132 |
+
|
133 |
+
# train_datasets, test_datasets, data_collator = load_data(dataset_name, num_clients=NUM_CLIENTS)
|
134 |
+
|
135 |
+
# trainloaders = []
|
136 |
+
# testloaders = []
|
137 |
+
# clients = []
|
138 |
+
|
139 |
+
# for i in range(NUM_CLIENTS):
|
140 |
+
# st.write(f"### Client {i+1} Datasets")
|
141 |
+
|
142 |
+
# train_df = pd.DataFrame(train_datasets[i])
|
143 |
+
# test_df = pd.DataFrame(test_datasets[i])
|
144 |
+
|
145 |
+
# st.write("#### Train Dataset")
|
146 |
+
# edited_train_df = st.data_editor(train_df, key=f"train_{i}")
|
147 |
+
# st.write("#### Test Dataset")
|
148 |
+
# edited_test_df = st.data_editor(test_df, key=f"test_{i}")
|
149 |
+
|
150 |
+
# edited_train_dataset = Dataset.from_pandas(edited_train_df)
|
151 |
+
# edited_test_dataset = Dataset.from_pandas(edited_test_df)
|
152 |
+
|
153 |
+
# trainloader = DataLoader(edited_train_dataset, shuffle=True, batch_size=32, collate_fn=data_collator)
|
154 |
+
# testloader = DataLoader(edited_test_dataset, batch_size=32, collate_fn=data_collator)
|
155 |
+
|
156 |
+
# trainloaders.append(trainloader)
|
157 |
+
# testloaders.append(testloader)
|
158 |
+
|
159 |
+
# net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
|
160 |
+
# client = CustomClient(net, trainloader, testloader, client_id=i+1)
|
161 |
+
# clients.append(client)
|
162 |
+
|
163 |
+
# if st.button("Start Training"):
|
164 |
+
# def client_fn(cid):
|
165 |
+
# return clients[int(cid)]
|
166 |
+
|
167 |
+
# def weighted_average(metrics):
|
168 |
+
# accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
|
169 |
+
# losses = [num_examples * m["loss"] for num_examples, m in metrics]
|
170 |
+
# examples = [num_examples for num_examples, _ in metrics]
|
171 |
+
# return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}
|
172 |
+
|
173 |
+
# strategy = fl.server.strategy.FedAvg(
|
174 |
+
# fraction_fit=1.0,
|
175 |
+
# fraction_evaluate=1.0,
|
176 |
+
# evaluate_metrics_aggregation_fn=weighted_average,
|
177 |
+
# )
|
178 |
+
|
179 |
+
# for round_num in range(NUM_ROUNDS):
|
180 |
+
# st.write(f"### Round {round_num + 1}")
|
181 |
+
# plot_placeholders = [st.empty() for _ in range(NUM_CLIENTS)]
|
182 |
+
|
183 |
+
# fl.simulation.start_simulation(
|
184 |
+
# client_fn=client_fn,
|
185 |
+
# num_clients=NUM_CLIENTS,
|
186 |
+
# config=fl.server.ServerConfig(num_rounds=1),
|
187 |
+
# strategy=strategy,
|
188 |
+
# client_resources={"num_cpus": 1, "num_gpus": 0},
|
189 |
+
# ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
|
190 |
+
# )
|
191 |
+
|
192 |
+
# for i, client in enumerate(clients):
|
193 |
+
# client.plot_metrics(round_num + 1, plot_placeholders[i])
|
194 |
+
# st.write(" ")
|
195 |
+
|
196 |
+
# st.success("Training completed successfully!")
|
197 |
+
|
198 |
+
# # Display final metrics
|
199 |
+
# st.write("## Final Client Metrics")
|
200 |
+
# for client in clients:
|
201 |
+
# st.write(f"### Client {client.client_id}")
|
202 |
+
# st.write(f"Final Loss: {client.losses[-1]:.4f}")
|
203 |
+
# st.write(f"Final Accuracy: {client.accuracies[-1]:.4f}")
|
204 |
+
# client.plot_metrics(NUM_ROUNDS, st.empty())
|
205 |
+
# st.write(" ")
|
206 |
+
|
207 |
+
# else:
|
208 |
+
# st.write("Click the 'Start Training' button to start the training process.")
|
209 |
+
|
210 |
+
# if __name__ == "__main__":
|
211 |
+
# main()
|
212 |
+
|
213 |
+
#############
|
214 |
# %%writefile app.py
|
215 |
|
216 |
import streamlit as st
|
|
|
224 |
import random
|
225 |
from collections import OrderedDict
|
226 |
import flwr as fl
|
227 |
+
from logging import INFO, DEBUG
|
228 |
+
from flwr.common.logger import log
|
229 |
|
230 |
DEVICE = torch.device("cpu")
|
231 |
|
|
|
302 |
self.net.load_state_dict(state_dict, strict=True)
|
303 |
|
304 |
def fit(self, parameters, config):
|
305 |
+
log(INFO, f"Client {self.client_id} is starting fit()")
|
306 |
self.set_parameters(parameters)
|
307 |
train(self.net, self.trainloader, epochs=1)
|
308 |
loss, accuracy = test(self.net, self.testloader)
|
309 |
self.losses.append(loss)
|
310 |
self.accuracies.append(accuracy)
|
311 |
+
log(INFO, f"Client {self.client_id} finished fit() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
312 |
return self.get_parameters(config={}), len(self.trainloader.dataset), {}
|
313 |
|
314 |
def evaluate(self, parameters, config):
|
315 |
+
log(INFO, f"Client {self.client_id} is starting evaluate()")
|
316 |
self.set_parameters(parameters)
|
317 |
loss, accuracy = test(self.net, self.testloader)
|
318 |
+
log(INFO, f"Client {self.client_id} finished evaluate() with loss: {loss:.4f} and accuracy: {accuracy:.4f}")
|
319 |
return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}
|
320 |
|
321 |
def plot_metrics(self, round_num, plot_placeholder):
|
|
|
341 |
fig.tight_layout()
|
342 |
plot_placeholder.pyplot(fig)
|
343 |
|
344 |
+
def read_log_file():
|
345 |
+
with open("log.txt", "r") as file:
|
346 |
+
return file.read()
|
347 |
+
|
348 |
def main():
|
349 |
st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
|
350 |
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
|
351 |
+
model_name = st.selectbox("Model", ["bert-base-uncased", "facebook/hubert-base-ls960", "distilbert-base-uncased"])
|
352 |
|
353 |
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
|
354 |
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)
|
|
|
427 |
client.plot_metrics(NUM_ROUNDS, st.empty())
|
428 |
st.write(" ")
|
429 |
|
430 |
+
# Display log.txt content
|
431 |
+
st.write("## Training Log")
|
432 |
+
st.text(read_log_file())
|
433 |
+
|
434 |
else:
|
435 |
st.write("Click the 'Start Training' button to start the training process.")
|
436 |
|
437 |
if __name__ == "__main__":
|
438 |
main()
|
439 |
|
440 |
+
#############
|
441 |
|
442 |
# # %%writefile app.py
|
443 |
|