File size: 21,218 Bytes
4da9684
41d8e7a
4da9684
 
 
 
 
 
 
41d8e7a
4da9684
41d8e7a
 
 
4da9684
 
 
41d8e7a
2859e8b
 
 
 
 
 
 
 
 
 
 
 
 
41d8e7a
 
 
 
 
 
 
 
ec3d192
2859e8b
 
41d8e7a
 
 
 
2859e8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec3d192
2859e8b
 
 
 
 
 
 
 
ec3d192
2859e8b
 
 
41d8e7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2859e8b
ec3d192
 
 
2859e8b
 
 
 
 
 
41d8e7a
2859e8b
 
 
ec3d192
 
41d8e7a
ec3d192
41d8e7a
 
ec3d192
41d8e7a
 
 
 
 
ec3d192
41d8e7a
 
 
 
 
ec3d192
41d8e7a
 
 
 
 
 
 
 
2859e8b
41d8e7a
2859e8b
 
 
 
 
 
 
41d8e7a
ec3d192
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2859e8b
 
 
 
92bae51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20edbc6
92bae51
20edbc6
92bae51
 
 
 
20edbc6
92bae51
 
20edbc6
92bae51
 
 
 
 
20edbc6
92bae51
 
 
 
20edbc6
 
 
 
 
 
 
 
 
 
 
92bae51
20edbc6
bc648b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b722033
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
# %%writefile app.py
# %%writefile app.py

import streamlit as st
import matplotlib.pyplot as plt
import torch
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
from datasets import load_dataset
from evaluate import load as load_metric
from torch.utils.data import DataLoader
import random
import warnings
from collections import OrderedDict
import flwr as fl

DEVICE = torch.device("cpu")

def load_data(dataset_name, train_size=20, test_size=20, num_clients=2):
    raw_datasets = load_dataset(dataset_name)
    raw_datasets = raw_datasets.shuffle(seed=42)
    del raw_datasets["unsupervised"]

    tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

    def tokenize_function(examples):
        return tokenizer(examples["text"], truncation=True)

    tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
    tokenized_datasets = tokenized_datasets.remove_columns("text")
    tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

    train_datasets = []
    test_datasets = []

    for _ in range(num_clients):
        train_dataset = tokenized_datasets["train"].select(random.sample(range(len(tokenized_datasets["train"])), train_size))
        test_dataset = tokenized_datasets["test"].select(random.sample(range(len(tokenized_datasets["test"])), test_size))
        train_datasets.append(train_dataset)
        test_datasets.append(test_dataset)

    data_collator = DataCollatorWithPadding(tokenizer=tokenizer)

    trainloaders = [DataLoader(ds, shuffle=True, batch_size=32, collate_fn=data_collator) for ds in train_datasets]
    testloaders = [DataLoader(ds, batch_size=32, collate_fn=data_collator) for ds in test_datasets]

    return trainloaders, testloaders

def train(net, trainloader, epochs):
    optimizer = AdamW(net.parameters(), lr=5e-5)
    net.train()
    for _ in range(epochs):
        for batch in trainloader:
            batch = {k: v.to(DEVICE) for k, v in batch.items()}
            outputs = net(**batch)
            loss = outputs.loss
            loss.backward()
            optimizer.step()
            optimizer.zero_grad()

def test(net, testloader):
    metric = load_metric("accuracy")
    net.eval()
    loss = 0
    for batch in testloader:
        batch = {k: v.to(DEVICE) for k, v in batch.items()}
        with torch.no_grad():
            outputs = net(**batch)
        logits = outputs.logits
        loss += outputs.loss.item()
        predictions = torch.argmax(logits, dim=-1)
        metric.add_batch(predictions=predictions, references=batch["labels"])
    loss /= len(testloader)
    accuracy = metric.compute()["accuracy"]
    return loss, accuracy

class CustomClient(fl.client.NumPyClient):
    def __init__(self, net, trainloader, testloader):
        self.net = net
        self.trainloader = trainloader
        self.testloader = testloader

    def get_parameters(self, config):
        return [val.cpu().numpy() for _, val in self.net.state_dict().items()]

    def set_parameters(self, parameters):
        params_dict = zip(self.net.state_dict().keys(), parameters)
        state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})
        self.net.load_state_dict(state_dict, strict=True)

    def fit(self, parameters, config):
        self.set_parameters(parameters)
        train(self.net, self.trainloader, epochs=1)
        return self.get_parameters(config={}), len(self.trainloader.dataset), {}

    def evaluate(self, parameters, config):
        self.set_parameters(parameters)
        loss, accuracy = test(self.net, self.testloader)
        return float(loss), len(self.testloader.dataset), {"accuracy": float(accuracy)}

def main():
    st.write("## Federated Learning with Dynamic Models and Datasets for Mobile Devices")
    dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"])
    model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"])

    net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

    NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
    NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)

    trainloaders, testloaders = load_data(dataset_name, num_clients=NUM_CLIENTS)

    if st.button("Start Training"):
        round_losses = []
        round_accuracies = []

        clients = [CustomClient(net, trainloaders[i], testloaders[i]) for i in range(NUM_CLIENTS)]

        def client_fn(cid):
            return clients[int(cid)]

        def weighted_average(metrics):
            accuracies = [num_examples * m["accuracy"] for num_examples, m in metrics]
            losses = [num_examples * m["loss"] for num_examples, m in metrics]
            examples = [num_examples for num_examples, _ in metrics]
            return {"accuracy": sum(accuracies) / sum(examples), "loss": sum(losses) / sum(examples)}

        strategy = fl.server.strategy.FedAvg(
            fraction_fit=1.0,
            fraction_evaluate=1.0,
            evaluate_metrics_aggregation_fn=weighted_average,
        )

        fl.simulation.start_simulation(
            client_fn=client_fn,
            num_clients=NUM_CLIENTS,
            config=fl.server.ServerConfig(num_rounds=NUM_ROUNDS),
            strategy=strategy,
            client_resources={"num_cpus": 1, "num_gpus": 0},
            ray_init_args={"log_to_driver": False, "num_cpus": 1, "num_gpus": 0}
        )

        st.success(f"Training completed successfully!")

    else:
        st.write("Click the 'Start Training' button to start the training process.")

if __name__ == "__main__":
    main()


##ORIGINAL###


# # %%writefile app.py

# import streamlit as st
# import matplotlib.pyplot as plt
# import torch
# from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW
# from datasets import load_dataset
# from evaluate import load as load_metric
# from torch.utils.data import DataLoader
# import random

# DEVICE = torch.device("cpu")
# NUM_ROUNDS = 3



# def load_data(dataset_name):
#     raw_datasets = load_dataset(dataset_name)
#     raw_datasets = raw_datasets.shuffle(seed=42)
#     del raw_datasets["unsupervised"]

#     tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

#     def tokenize_function(examples):
#         return tokenizer(examples["text"], truncation=True)

#     train_population = random.sample(range(len(raw_datasets["train"])), 20)
#     test_population = random.sample(range(len(raw_datasets["test"])), 20)

#     tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)
#     tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population)
#     tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population)

#     tokenized_datasets = tokenized_datasets.remove_columns("text")
#     tokenized_datasets = tokenized_datasets.rename_column("label", "labels")

#     data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
#     trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator)
#     testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator)

#     return trainloader, testloader

# def train(net, trainloader, epochs):
#     optimizer = AdamW(net.parameters(), lr=5e-5)
#     net.train()
#     for _ in range(epochs):
#         for batch in trainloader:
#             batch = {k: v.to(DEVICE) for k, v in batch.items()}
#             outputs = net(**batch)
#             loss = outputs.loss
#             loss.backward()
#             optimizer.step()
#             optimizer.zero_grad()

# def test(net, testloader):
#     metric = load_metric("accuracy")
#     loss = 0
#     net.eval()
#     for batch in testloader:
#         batch = {k: v.to(DEVICE) for k, v in batch.items()}
#         with torch.no_grad():
#             outputs = net(**batch)
#         logits = outputs.logits
#         loss += outputs.loss.item()
#         predictions = torch.argmax(logits, dim=-1)
#         metric.add_batch(predictions=predictions, references=batch["labels"])
#     loss /= len(testloader.dataset)
#     accuracy = metric.compute()["accuracy"]
#     return loss, accuracy





# from transformers import Wav2Vec2Processor, HubertForSequenceClassification
# import torch

    
# def main():
#     st.write("## Federated Learning with dynamic models and datasets for mobile devices")
#     dataset_name = st.selectbox("Dataset", ["imdb","audio_instruction_task", "amazon_polarity", "ag_news"])
#     model_name = st.selectbox("Model", ["bert-base-uncased","facebook/hubert-base-ls960", "distilbert-base-uncased"])

#     net = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)
#     # processor = Wav2Vec2Processor.from_pretrained(model_name)
#     # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

#     # feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name)
#     # net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

#     NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2)
#     NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3)

#     trainloader, testloader = load_data(dataset_name)

#     if st.button("Start Training"):
#         round_losses = []
#         round_accuracies = []  # Store accuracy values for each round
#         for round_num in range(1, NUM_ROUNDS + 1):
#             st.write(f"## Round {round_num}")

#             st.write("### Training Metrics for Each Client")
#             for client in range(1, NUM_CLIENTS + 1):
#                 client_loss, client_accuracy = test(net, testloader)  # Placeholder for actual client metrics
#                 st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}")

#             st.write("### Accuracy Over Rounds")
#             round_accuracies.append(client_accuracy)  # Append the accuracy for this round
#             plt.plot(range(1, round_num + 1), round_accuracies, marker='o')  # Plot accuracy over rounds
#             plt.xlabel("Round")
#             plt.ylabel("Accuracy")
#             plt.title("Accuracy Over Rounds")
#             st.pyplot()

#             st.write("### Loss Over Rounds")
#             loss_value = random.random()  # Placeholder for loss values
#             round_losses.append(loss_value)
#             rounds = list(range(1, round_num + 1))
#             plt.plot(rounds, round_losses)
#             plt.xlabel("Round")
#             plt.ylabel("Loss")
#             plt.title("Loss Over Rounds")
#             st.pyplot()

#             st.success(f"Round {round_num} completed successfully!")

#     else:
#         st.write("Click the 'Start Training' button to start the training process.")

# if __name__ == "__main__":
#     main()
###ORIGINAL##




# ########################TinyLLM####################################

# import torch
# import torch.nn as nn
# from torch.nn import functional as F

# # hyperparameters
# batch_size = 64 # how many independent sequences will we process in parallel?
# block_size = 256 # what is the maximum context length for predictions?
# max_iters = 5000
# eval_interval = 500
# learning_rate = 3e-4
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# eval_iters = 200
# n_embd = 384
# n_head = 6
# n_layer = 6
# dropout = 0.2
# # ------------

# torch.manual_seed(1337)

# # wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
# with open('input.txt', 'r', encoding='utf-8') as f:
#     text = f.read()

# # here are all the unique characters that occur in this text
# chars = sorted(list(set(text)))
# vocab_size = len(chars)
# # create a mapping from characters to integers
# stoi = { ch:i for i,ch in enumerate(chars) }
# itos = { i:ch for i,ch in enumerate(chars) }
# encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
# decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

# # Train and test splits
# data = torch.tensor(encode(text), dtype=torch.long)
# n = int(0.9*len(data)) # first 90% will be train, rest val
# train_data = data[:n]
# val_data = data[n:]

# # data loading
# def get_batch(split):
#     # generate a small batch of data of inputs x and targets y
#     data = train_data if split == 'train' else val_data
#     ix = torch.randint(len(data) - block_size, (batch_size,))
#     x = torch.stack([data[i:i+block_size] for i in ix])
#     y = torch.stack([data[i+1:i+block_size+1] for i in ix])
#     x, y = x.to(device), y.to(device)
#     return x, y

# @torch.no_grad()
# def estimate_loss():
#     out = {}
#     model.eval()
#     for split in ['train', 'val']:
#         losses = torch.zeros(eval_iters)
#         for k in range(eval_iters):
#             X, Y = get_batch(split)
#             logits, loss = model(X, Y)
#             losses[k] = loss.item()
#         out[split] = losses.mean()
#     model.train()
#     return out

# class Head(nn.Module):
#     """ one head of self-attention """

#     def __init__(self, head_size):
#         super().__init__()
#         self.key = nn.Linear(n_embd, head_size, bias=False)
#         self.query = nn.Linear(n_embd, head_size, bias=False)
#         self.value = nn.Linear(n_embd, head_size, bias=False)
#         self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))

#         self.dropout = nn.Dropout(dropout)

#     def forward(self, x):
#         # input of size (batch, time-step, channels)
#         # output of size (batch, time-step, head size)
#         B,T,C = x.shape
#         k = self.key(x)   # (B,T,hs)
#         q = self.query(x) # (B,T,hs)
#         # compute attention scores ("affinities")
#         wei = q @ k.transpose(-2,-1) * k.shape[-1]**-0.5 # (B, T, hs) @ (B, hs, T) -> (B, T, T)
#         wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
#         wei = F.softmax(wei, dim=-1) # (B, T, T)
#         wei = self.dropout(wei)
#         # perform the weighted aggregation of the values
#         v = self.value(x) # (B,T,hs)
#         out = wei @ v # (B, T, T) @ (B, T, hs) -> (B, T, hs)
#         return out

# class MultiHeadAttention(nn.Module):
#     """ multiple heads of self-attention in parallel """

#     def __init__(self, num_heads, head_size):
#         super().__init__()
#         self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
#         self.proj = nn.Linear(head_size * num_heads, n_embd)
#         self.dropout = nn.Dropout(dropout)

#     def forward(self, x):
#         out = torch.cat([h(x) for h in self.heads], dim=-1)
#         out = self.dropout(self.proj(out))
#         return out

# class FeedFoward(nn.Module):
#     """ a simple linear layer followed by a non-linearity """

#     def __init__(self, n_embd):
#         super().__init__()
#         self.net = nn.Sequential(
#             nn.Linear(n_embd, 4 * n_embd),
#             nn.ReLU(),
#             nn.Linear(4 * n_embd, n_embd),
#             nn.Dropout(dropout),
#         )

#     def forward(self, x):
#         return self.net(x)

# class Block(nn.Module):
#     """ Transformer block: communication followed by computation """

#     def __init__(self, n_embd, n_head):
#         # n_embd: embedding dimension, n_head: the number of heads we'd like
#         super().__init__()
#         head_size = n_embd // n_head
#         self.sa = MultiHeadAttention(n_head, head_size)
#         self.ffwd = FeedFoward(n_embd)
#         self.ln1 = nn.LayerNorm(n_embd)
#         self.ln2 = nn.LayerNorm(n_embd)

#     def forward(self, x):
#         x = x + self.sa(self.ln1(x))
#         x = x + self.ffwd(self.ln2(x))
#         return x

# class GPTLanguageModel(nn.Module):

#     def __init__(self):
#         super().__init__()
#         # each token directly reads off the logits for the next token from a lookup table
#         self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
#         self.position_embedding_table = nn.Embedding(block_size, n_embd)
#         self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
#         self.ln_f = nn.LayerNorm(n_embd) # final layer norm
#         self.lm_head = nn.Linear(n_embd, vocab_size)

#         # better init, not covered in the original GPT video, but important, will cover in followup video
#         self.apply(self._init_weights)

#     def _init_weights(self, module):
#         if isinstance(module, nn.Linear):
#             torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
#             if module.bias is not None:
#                 torch.nn.init.zeros_(module.bias)
#         elif isinstance(module, nn.Embedding):
#             torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)

#     def forward(self, idx, targets=None):
#         B, T = idx.shape

#         # idx and targets are both (B,T) tensor of integers
#         tok_emb = self.token_embedding_table(idx) # (B,T,C)
#         pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
#         x = tok_emb + pos_emb # (B,T,C)
#         x = self.blocks(x) # (B,T,C)
#         x = self.ln_f(x) # (B,T,C)
#         logits = self.lm_head(x) # (B,T,vocab_size)

#         if targets is None:
#             loss = None
#         else:
#             B, T, C = logits.shape
#             logits = logits.view(B*T, C)
#             targets = targets.view(B*T)
#             loss = F.cross_entropy(logits, targets)

#         return logits, loss

#     def generate(self, idx, max_new_tokens):
#         # idx is (B, T) array of indices in the current context
#         for _ in range(max_new_tokens):
#             # crop idx to the last block_size tokens
#             idx_cond = idx[:, -block_size:]
#             # get the predictions
#             logits, loss = self(idx_cond)
#             # focus only on the last time step
#             logits = logits[:, -1, :] # becomes (B, C)
#             # apply softmax to get probabilities
#             probs = F.softmax(logits, dim=-1) # (B, C)
#             # sample from the distribution
#             idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
#             # append sampled index to the running sequence
#             idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
#         return idx

# model = GPTLanguageModel()
# m = model.to(device)
# # print the number of parameters in the model
# print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')

# # create a PyTorch optimizer
# optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)

# for iter in range(max_iters):

#     # every once in a while evaluate the loss on train and val sets
#     if iter % eval_interval == 0 or iter == max_iters - 1:
#         losses = estimate_loss()
#         print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}")

#     # sample a batch of data
#     xb, yb = get_batch('train')

#     # evaluate the loss
#     logits, loss = model(xb, yb)
#     optimizer.zero_grad(set_to_none=True)
#     loss.backward()
#     optimizer.step()

# # generate from the model
# context = torch.zeros((1, 1), dtype=torch.long, device=device)
# print(decode(m.generate(context, max_new_tokens=500)[0].tolist()))
# #open('more.txt', 'w').write(decode(m.generate(context, max_new_tokens=10000)[0].tolist()))











# ########################TinyLLM##################################



# def main():
#     st.write("## Audio Classification with HuBERT")
#     dataset_name = st.selectbox("Dataset", ["librispeech", "your_audio_dataset"])
#     model_name = "facebook/hubert-base-ls960"

#     processor = Wav2Vec2Processor.from_pretrained(model_name)
#     net = HubertForSequenceClassification.from_pretrained(model_name, num_labels=2).to(DEVICE)

#     train_dataset, test_dataset = load_data(dataset_name)
#     # Further implementation needed for actual data preparation and training loops

#     st.write("Details of further steps would be filled in based on specific requirements and dataset structure.")

# if __name__ == "__main__":
#     main()

# from transformers import Wav2Vec2FeatureExtractor, HubertForSequenceClassification
# import torch
# import soundfile as sf

# def load_audio(file_path):
#     # Load an audio file, return waveform and sampling rate
#     waveform, sample_rate = sf.read(file_path)
#     return waveform, sample_rate

# def prepare_dataset(data_paths):
#     # Dummy function to simulate loading and processing a dataset
#     # Replace this with actual data loading and processing logic
#     features = []
#     labels = []
#     for path, label in data_paths:
#         waveform, sr = load_audio(path)
#         input_values = feature_extractor(waveform, sampling_rate=sr, return_tensors="pt").input_values
#         features.append(input_values)
#         labels.append(label)
#     return torch.cat(features, dim=0), torch.tensor(labels)