File size: 1,225 Bytes
ce10f9a
5b4c169
a3ae69c
4ffc5f1
ce10f9a
 
07fca4f
d43b4cf
ce10f9a
604d57b
a06cfd4
 
47f2ac0
 
49c5437
 
47f2ac0
cc11b4b
49c5437
 
fe257b1
49c5437
 
 
 
cc11b4b
 
 
 
 
49c5437
 
1917b0b
 
ce8a810
cc11b4b
ce8a810
 
1917b0b
a3ae69c
94461c6
a3ae69c
 
 
ce10f9a
a3ae69c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import os 
import requests
import gradio as gr 

api_token = os.environ.get("TOKEN")

API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}

def query(payload):
        response = requests.post(API_URL, headers=headers, json=payload)
        return response.json()




def analyze_sentiment(text):
    output = query({     
    "inputs":   f'''<|begin_of_text|>
    <|start_header_id|>system<|end_header_id|>
you are a feeling analyser and you'll say only "positive" if i'm feeling positive and "negativ" if i'm feeling sad or bad   <|eot_id|>
    <|start_header_id|>user<|end_header_id|>
    {text}
    <|eot_id|>
    <|start_header_id|>assistant<|end_header_id|>

    "parameters": {
        "max_new_tokens": 1,
        "return_full_text": False
        }
    '''
})

    # Assurez-vous de gérer correctement la sortie de l'API
    if isinstance(output, list) and len(output) > 0:
        return output[0].get('generated_text', 'Erreur: Réponse inattendue')
    else:
        return "Erreur: Réponse inattendue de l'API"

demo = gr.Interface(
    fn = analyze_sentiment,
    inputs=["text"],
    outputs=["text"],
)

demo.launch()