Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,44 +1,47 @@
|
|
| 1 |
-
|
|
|
|
|
|
|
| 2 |
import requests
|
| 3 |
-
import os
|
| 4 |
import spaces
|
| 5 |
|
|
|
|
|
|
|
| 6 |
|
| 7 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
| 8 |
-
api_token = os.environ.get("TOKEN")
|
| 9 |
headers = {"Authorization": f"Bearer {api_token}"}
|
| 10 |
@spaces.GPU
|
|
|
|
| 11 |
def query(payload):
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
| 1 |
+
|
| 2 |
+
import torch
|
| 3 |
+
import os
|
| 4 |
import requests
|
|
|
|
| 5 |
import spaces
|
| 6 |
|
| 7 |
+
api_token = os.environ.get("TOKEN")
|
| 8 |
+
|
| 9 |
|
| 10 |
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
|
|
|
|
| 11 |
headers = {"Authorization": f"Bearer {api_token}"}
|
| 12 |
@spaces.GPU
|
| 13 |
+
|
| 14 |
def query(payload):
|
| 15 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
| 16 |
+
return response.json()
|
| 17 |
+
|
| 18 |
+
output = query({
|
| 19 |
+
"inputs": " test ",
|
| 20 |
+
})
|
| 21 |
+
def analyze_sentiment(text):
|
| 22 |
+
# Construire le prompt
|
| 23 |
+
prompt = f"""Tu es un analyseur de sentiment. Ton rôle est d'évaluer le sentiment général du texte fourni. Réponds uniquement par 'positif' ou 'négatif'. N'ajoute aucune explication. Voici le texte à analyser :
|
| 24 |
+
|
| 25 |
+
{text}
|
| 26 |
+
|
| 27 |
+
Sentiment :"""
|
| 28 |
+
|
| 29 |
+
# Tokenizer le prompt
|
| 30 |
+
inputs = prompt
|
| 31 |
+
|
| 32 |
+
# Générer la réponse
|
| 33 |
+
with torch.no_grad():
|
| 34 |
+
outputs = headers.generate(
|
| 35 |
+
**inputs,
|
| 36 |
+
max_new_tokens=1,
|
| 37 |
+
num_return_sequences=1,
|
| 38 |
+
temperature=0.1,
|
| 39 |
+
top_p=0.9, # Ajuster le top_p pour contrôler la diversité
|
| 40 |
+
)
|
| 41 |
+
|
| 42 |
+
# Décoder et retourner la réponse
|
| 43 |
+
response = outputs[0]
|
| 44 |
+
return response.split("Sentiment :")[-1].strip()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|