Spaces:
Runtime error
Runtime error
File size: 1,001 Bytes
ce10f9a 5b4c169 a3ae69c 4ffc5f1 ce10f9a 07fca4f d43b4cf ce10f9a 604d57b a06cfd4 47f2ac0 a06cfd4 962bd20 a06cfd4 47f2ac0 a06cfd4 962bd20 1917b0b ce8a810 1917b0b ce8a810 1917b0b a3ae69c 94461c6 a3ae69c ce10f9a a3ae69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
import os
import requests
import gradio as gr
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(text):
output = query({
"inputs": {
"<|start_header_id|>{system}<|end_header_id|>": "you'll only answer in english",
"<|start_header_id|>{user}<|end_header_id|>": text
}
})
# Assurez-vous de gérer correctement la sortie de l'API
if isinstance(output, list) and len(output) > 0:
return output[0].get('generated_text', 'Erreur: Réponse inattendue')
else:
return "Erreur: Réponse inattendue de l'API"
demo = gr.Interface(
fn = analyze_sentiment,
inputs=["text"],
outputs=["text"],
)
demo.launch() |