File size: 1,206 Bytes
1b27ac3
5b4c169
1b27ac3
4ffc5f1
ce10f9a
07fca4f
d43b4cf
ce10f9a
604d57b
1b27ac3
05bab40
47f2ac0
 
d5b1d28
1b27ac3
 
 
 
 
 
 
 
 
 
1917b0b
d5b1d28
 
1b27ac3
 
 
 
 
 
ce8a810
1b27ac3
1917b0b
a3ae69c
1b27ac3
 
 
a3ae69c
ce10f9a
a3ae69c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import requests
import gradio as gr

api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}

def query(payload):
    response = requests.post(API_URL, headers=headers, json=payload)
    return response.json()

def analyze_sentiment(text):
    output = query({
        "inputs": f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are a feeling analyser and you'll say only "positive" if I'm feeling positive and "negative" if I'm feeling sad
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
    })

    if isinstance(output, list) and len(output) > 0:
        response = output[0].get('generated_text', '').strip().lower()
        if 'positive' in response:
            return 'positive'
        elif 'negative' in response:
            return 'negative'
        else:
            return "Erreur: Réponse inattendue"
    else:
        return "Erreur: Réponse inattendue de l'API"

demo = gr.Interface(
    fn=analyze_sentiment,
    inputs="text",
    outputs="text"
)

demo.launch()