Spaces:
Runtime error
Runtime error
File size: 1,206 Bytes
1b27ac3 5b4c169 1b27ac3 4ffc5f1 ce10f9a 07fca4f d43b4cf ce10f9a 604d57b 1b27ac3 05bab40 47f2ac0 d5b1d28 1b27ac3 1917b0b d5b1d28 1b27ac3 ce8a810 1b27ac3 1917b0b a3ae69c 1b27ac3 a3ae69c ce10f9a a3ae69c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import os
import requests
import gradio as gr
api_token = os.environ.get("TOKEN")
API_URL = "https://api-inference.huggingface.co/models/meta-llama/Meta-Llama-3-8B-Instruct"
headers = {"Authorization": f"Bearer {api_token}"}
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.json()
def analyze_sentiment(text):
output = query({
"inputs": f'''<|begin_of_text|>
<|start_header_id|>system<|end_header_id|>
You are a feeling analyser and you'll say only "positive" if I'm feeling positive and "negative" if I'm feeling sad
<|eot_id|>
<|start_header_id|>user<|end_header_id|>
{text}
<|eot_id|>
<|start_header_id|>assistant<|end_header_id|>
'''
})
if isinstance(output, list) and len(output) > 0:
response = output[0].get('generated_text', '').strip().lower()
if 'positive' in response:
return 'positive'
elif 'negative' in response:
return 'negative'
else:
return "Erreur: Réponse inattendue"
else:
return "Erreur: Réponse inattendue de l'API"
demo = gr.Interface(
fn=analyze_sentiment,
inputs="text",
outputs="text"
)
demo.launch() |