aiqcamp's picture
Update app.py
6feb9f3 verified
raw
history blame
9.01 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image
import numpy as np
import os
import tempfile
import spaces
import gradio as gr
import subprocess
import sys
def install_flash_attn_wheel():
flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"
try:
# Call pip to install the wheel file
subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url])
print("Wheel installed successfully!")
except subprocess.CalledProcessError as e:
print(f"Failed to install the flash attnetion wheel. Error: {e}")
install_flash_attn_wheel()
import cv2
try:
from mmengine.visualization import Visualizer
except ImportError:
Visualizer = None
print("Warning: mmengine is not installed, visualization is disabled.")
# Load the model and tokenizer
model_path = "ByteDance/Sa2VA-4B"
model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype="auto",
device_map="cuda:0",
trust_remote_code=True,
).eval().cuda()
tokenizer = AutoTokenizer.from_pretrained(
model_path,
trust_remote_code = True,
)
from third_parts import VideoReader
def read_video(video_path, video_interval):
vid_frames = VideoReader(video_path)[::video_interval]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
image_paths = [] # List to store paths of saved images
for frame_idx in range(len(vid_frames)):
frame_image = vid_frames[frame_idx]
frame_image = frame_image[..., ::-1] # BGR (opencv system) to RGB (numpy system)
frame_image = Image.fromarray(frame_image)
vid_frames[frame_idx] = frame_image
# Save the frame as a .jpg file in the temporary folder
image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
frame_image.save(image_path, format="JPEG")
# Append the image path to the list
image_paths.append(image_path)
return vid_frames, image_paths
def visualize(pred_mask, image_path, work_dir):
visualizer = Visualizer()
img = cv2.imread(image_path)
visualizer.set_image(img)
visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
visual_result = visualizer.get_image()
output_path = os.path.join(work_dir, os.path.basename(image_path))
cv2.imwrite(output_path, visual_result)
return output_path
# μ½”λ“œ 상단에 import μΆ”κ°€
from deep_translator import GoogleTranslator
# λ²ˆμ—­ ν•¨μˆ˜ μˆ˜μ •
def translate_to_korean(text):
try:
translator = GoogleTranslator(source='en', target='ko')
return translator.translate(text)
except Exception as e:
print(f"Translation error: {e}")
return text
@spaces.GPU
def image_vision(image_input_path, prompt):
# ν•œκΈ€ μž…λ ₯ 확인
is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
image_path = image_input_path
text_prompts = f"<image>{prompt}"
image = Image.open(image_path).convert('RGB')
input_dict = {
'image': image,
'text': text_prompts,
'past_text': '',
'mask_prompts': None,
'tokenizer': tokenizer,
}
return_dict = model.predict_forward(**input_dict)
print(return_dict)
answer = return_dict["prediction"]
# ν•œκΈ€ ν”„λ‘¬ν”„νŠΈμΈ 경우 응닡을 ν•œκΈ€λ‘œ λ²ˆμ—­
if is_korean:
# [SEG]λŠ” λ³΄μ‘΄ν•˜λ©΄μ„œ λ‚˜λ¨Έμ§€ ν…μŠ€νŠΈλ§Œ λ²ˆμ—­
if '[SEG]' in answer:
parts = answer.split('[SEG]')
translated_parts = [translate_to_korean(part.strip()) for part in parts]
answer = '[SEG]'.join(translated_parts)
else:
answer = translate_to_korean(answer)
seg_image = return_dict["prediction_masks"]
if '[SEG]' in answer and Visualizer is not None:
pred_masks = seg_image[0]
temp_dir = tempfile.mkdtemp()
pred_mask = pred_masks
os.makedirs(temp_dir, exist_ok=True)
seg_result = visualize(pred_mask, image_input_path, temp_dir)
return answer, seg_result
else:
return answer, None
@spaces.GPU(duration=80)
def video_vision(video_input_path, prompt, video_interval):
# ν•œκΈ€ μž…λ ₯ 확인
is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
cap = cv2.VideoCapture(video_input_path)
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_skip_factor = video_interval
new_fps = original_fps / frame_skip_factor
vid_frames, image_paths = read_video(video_input_path, video_interval)
question = f"<image>{prompt}"
result = model.predict_forward(
video=vid_frames,
text=question,
tokenizer=tokenizer,
)
prediction = result['prediction']
print(prediction)
# ν•œκΈ€ ν”„λ‘¬ν”„νŠΈμΈ 경우 응닡을 ν•œκΈ€λ‘œ λ²ˆμ—­
if is_korean:
if '[SEG]' in prediction:
parts = prediction.split('[SEG]')
translated_parts = [translate_to_korean(part.strip()) for part in parts]
prediction = '[SEG]'.join(translated_parts)
else:
prediction = translate_to_korean(prediction)
if '[SEG]' in prediction and Visualizer is not None:
_seg_idx = 0
pred_masks = result['prediction_masks'][_seg_idx]
seg_frames = []
for frame_idx in range(len(vid_frames)):
pred_mask = pred_masks[frame_idx]
temp_dir = tempfile.mkdtemp()
os.makedirs(temp_dir, exist_ok=True)
seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
seg_frames.append(seg_frame)
output_video = "output_video.mp4"
frame = cv2.imread(seg_frames[0])
height, width, layers = frame.shape
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))
for img_path in seg_frames:
frame = cv2.imread(img_path)
video.write(frame)
video.release()
print(f"Video created successfully at {output_video}")
return prediction, output_video
else:
return prediction, None
# Gradio UI
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Column():
gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
gr.HTML("""
<div style="display:flex;column-gap:4px;">
<a href="https://github.com/magic-research/Sa2VA">
<img src='https://img.shields.io/badge/GitHub-Repo-blue'>
</a>
<a href="https://arxiv.org/abs/2501.04001">
<img src='https://img.shields.io/badge/ArXiv-Paper-red'>
</a>
<a href="https://huggingface.co/spaces/fffiloni/Sa2VA-simple-demo?duplicate=true">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
</a>
<a href="https://huggingface.co/fffiloni">
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
</a>
</div>
""")
with gr.Tab("Single Image"):
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Image IN", type="filepath")
with gr.Row():
instruction = gr.Textbox(label="Instruction", scale=4)
submit_image_btn = gr.Button("Submit", scale=1)
with gr.Column():
output_res = gr.Textbox(label="Response")
output_image = gr.Image(label="Segmentation", type="numpy")
submit_image_btn.click(
fn = image_vision,
inputs = [image_input, instruction],
outputs = [output_res, output_image]
)
with gr.Tab("Video"):
with gr.Row():
with gr.Column():
video_input = gr.Video(label="Video IN")
frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
with gr.Row():
vid_instruction = gr.Textbox(label="Instruction", scale=4)
submit_video_btn = gr.Button("Submit", scale=1)
with gr.Column():
vid_output_res = gr.Textbox(label="Response")
output_video = gr.Video(label="Segmentation")
submit_video_btn.click(
fn = video_vision,
inputs = [video_input, vid_instruction, frame_interval],
outputs = [vid_output_res, output_video]
)
demo.queue().launch(show_api=False, show_error=True)