import torch from transformers import AutoModelForCausalLM, AutoTokenizer from PIL import Image import numpy as np import os import tempfile import spaces import gradio as gr import subprocess import sys def install_flash_attn_wheel(): flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl" try: # Call pip to install the wheel file subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url]) print("Wheel installed successfully!") except subprocess.CalledProcessError as e: print(f"Failed to install the flash attnetion wheel. Error: {e}") install_flash_attn_wheel() import cv2 try: from mmengine.visualization import Visualizer except ImportError: Visualizer = None print("Warning: mmengine is not installed, visualization is disabled.") # Load the model and tokenizer model_path = "ByteDance/Sa2VA-4B" model = AutoModelForCausalLM.from_pretrained( model_path, torch_dtype="auto", device_map="cuda:0", trust_remote_code=True, ).eval().cuda() tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code = True, ) from third_parts import VideoReader def read_video(video_path, video_interval): vid_frames = VideoReader(video_path)[::video_interval] temp_dir = tempfile.mkdtemp() os.makedirs(temp_dir, exist_ok=True) image_paths = [] # List to store paths of saved images for frame_idx in range(len(vid_frames)): frame_image = vid_frames[frame_idx] frame_image = frame_image[..., ::-1] # BGR (opencv system) to RGB (numpy system) frame_image = Image.fromarray(frame_image) vid_frames[frame_idx] = frame_image # Save the frame as a .jpg file in the temporary folder image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg") frame_image.save(image_path, format="JPEG") # Append the image path to the list image_paths.append(image_path) return vid_frames, image_paths def visualize(pred_mask, image_path, work_dir): visualizer = Visualizer() img = cv2.imread(image_path) visualizer.set_image(img) visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4) visual_result = visualizer.get_image() output_path = os.path.join(work_dir, os.path.basename(image_path)) cv2.imwrite(output_path, visual_result) return output_path # 코드 상단에 import 추가 from deep_translator import GoogleTranslator # 번역 함수 수정 def translate_to_korean(text): try: translator = GoogleTranslator(source='en', target='ko') return translator.translate(text) except Exception as e: print(f"Translation error: {e}") return text @spaces.GPU def image_vision(image_input_path, prompt): # 한글 입력 확인 is_korean = any(ord('가') <= ord(char) <= ord('힣') for char in prompt) image_path = image_input_path text_prompts = f"{prompt}" image = Image.open(image_path).convert('RGB') input_dict = { 'image': image, 'text': text_prompts, 'past_text': '', 'mask_prompts': None, 'tokenizer': tokenizer, } return_dict = model.predict_forward(**input_dict) print(return_dict) answer = return_dict["prediction"] # 한글 프롬프트인 경우 응답을 한글로 번역 if is_korean: # [SEG]는 보존하면서 나머지 텍스트만 번역 if '[SEG]' in answer: parts = answer.split('[SEG]') translated_parts = [translate_to_korean(part.strip()) for part in parts] answer = '[SEG]'.join(translated_parts) else: answer = translate_to_korean(answer) seg_image = return_dict["prediction_masks"] if '[SEG]' in answer and Visualizer is not None: pred_masks = seg_image[0] temp_dir = tempfile.mkdtemp() pred_mask = pred_masks os.makedirs(temp_dir, exist_ok=True) seg_result = visualize(pred_mask, image_input_path, temp_dir) return answer, seg_result else: return answer, None @spaces.GPU(duration=80) def video_vision(video_input_path, prompt, video_interval): # 한글 입력 확인 is_korean = any(ord('가') <= ord(char) <= ord('힣') for char in prompt) cap = cv2.VideoCapture(video_input_path) original_fps = cap.get(cv2.CAP_PROP_FPS) frame_skip_factor = video_interval new_fps = original_fps / frame_skip_factor vid_frames, image_paths = read_video(video_input_path, video_interval) question = f"{prompt}" result = model.predict_forward( video=vid_frames, text=question, tokenizer=tokenizer, ) prediction = result['prediction'] print(prediction) # 한글 프롬프트인 경우 응답을 한글로 번역 if is_korean: if '[SEG]' in prediction: parts = prediction.split('[SEG]') translated_parts = [translate_to_korean(part.strip()) for part in parts] prediction = '[SEG]'.join(translated_parts) else: prediction = translate_to_korean(prediction) if '[SEG]' in prediction and Visualizer is not None: _seg_idx = 0 pred_masks = result['prediction_masks'][_seg_idx] seg_frames = [] for frame_idx in range(len(vid_frames)): pred_mask = pred_masks[frame_idx] temp_dir = tempfile.mkdtemp() os.makedirs(temp_dir, exist_ok=True) seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir) seg_frames.append(seg_frame) output_video = "output_video.mp4" frame = cv2.imread(seg_frames[0]) height, width, layers = frame.shape fourcc = cv2.VideoWriter_fourcc(*'mp4v') video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height)) for img_path in seg_frames: frame = cv2.imread(img_path) video.write(frame) video.release() print(f"Video created successfully at {output_video}") return prediction, output_video else: return prediction, None # Gradio UI with gr.Blocks(analytics_enabled=False) as demo: with gr.Column(): gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos") gr.HTML("""
Duplicate this Space Follow me on HF
""") with gr.Tab("Single Image"): with gr.Row(): with gr.Column(): image_input = gr.Image(label="Image IN", type="filepath") with gr.Row(): instruction = gr.Textbox(label="Instruction", scale=4) submit_image_btn = gr.Button("Submit", scale=1) with gr.Column(): output_res = gr.Textbox(label="Response") output_image = gr.Image(label="Segmentation", type="numpy") submit_image_btn.click( fn = image_vision, inputs = [image_input, instruction], outputs = [output_res, output_image] ) with gr.Tab("Video"): with gr.Row(): with gr.Column(): video_input = gr.Video(label="Video IN") frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6) with gr.Row(): vid_instruction = gr.Textbox(label="Instruction", scale=4) submit_video_btn = gr.Button("Submit", scale=1) with gr.Column(): vid_output_res = gr.Textbox(label="Response") output_video = gr.Video(label="Segmentation") submit_video_btn.click( fn = video_vision, inputs = [video_input, vid_instruction, frame_interval], outputs = [vid_output_res, output_video] ) demo.queue().launch(show_api=False, show_error=True)