File size: 9,014 Bytes
35a9ed4
bdee200
35a9ed4
 
 
2a274cc
5bdf407
35a9ed4
 
b29876f
 
 
 
 
 
 
 
 
 
 
 
 
 
2a274cc
 
 
 
 
 
 
35a9ed4
 
e856606
bdee200
19540cf
bdee200
893825d
bdee200
19540cf
488936c
6207473
 
 
 
35a9ed4
5672cc2
 
 
678631b
 
 
 
 
5672cc2
 
 
 
 
678631b
 
13d4a9a
678631b
 
 
 
 
5672cc2
2a274cc
 
 
 
 
 
 
 
 
 
 
e5eaa21
854614c
 
 
 
 
e5eaa21
 
854614c
 
 
 
 
e5eaa21
5bdf407
35a9ed4
e5eaa21
f289e91
 
35a9ed4
 
 
 
 
 
 
 
 
 
 
8c2e68c
e5eaa21
2a274cc
e5eaa21
f289e91
e5eaa21
 
 
854614c
e5eaa21
 
 
f289e91
dc9bdbf
8c2e68c
e5eaa21
af1dd1a
2a274cc
d28dde6
2a274cc
 
c0784bd
 
 
 
5bdf407
44284c4
e5eaa21
f289e91
 
7f75f49
44284c4
 
 
 
 
5672cc2
 
 
 
 
 
 
 
 
e5eaa21
f289e91
e5eaa21
 
854614c
e5eaa21
 
 
 
 
6feb9f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a9ed4
 
 
9d69626
35a9ed4
b47ae2e
a945d67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5672cc2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27ab64e
86023a7
5672cc2
 
 
 
 
5439a6f
5672cc2
 
 
44284c4
5672cc2
 
35a9ed4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from PIL import Image 
import numpy as np 
import os 
import tempfile
import spaces
import gradio as gr

import subprocess
import sys

def install_flash_attn_wheel():
    flash_attn_wheel_url = "https://github.com/Dao-AILab/flash-attention/releases/download/v2.6.3/flash_attn-2.6.3+cu123torch2.4cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"
    try:
        # Call pip to install the wheel file
        subprocess.check_call([sys.executable, "-m", "pip", "install", flash_attn_wheel_url])
        print("Wheel installed successfully!")
    except subprocess.CalledProcessError as e:
        print(f"Failed to install the flash attnetion wheel. Error: {e}")

install_flash_attn_wheel()

import cv2
try:
    from mmengine.visualization import Visualizer
except ImportError:
    Visualizer = None
    print("Warning: mmengine is not installed, visualization is disabled.")
    
# Load the model and tokenizer 
model_path = "ByteDance/Sa2VA-4B"
 
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype="auto",
    device_map="cuda:0",
    trust_remote_code=True,
).eval().cuda()

tokenizer = AutoTokenizer.from_pretrained(
    model_path,
    trust_remote_code = True,
)

from third_parts import VideoReader
def read_video(video_path, video_interval):
    vid_frames = VideoReader(video_path)[::video_interval]
    
    temp_dir = tempfile.mkdtemp()
    os.makedirs(temp_dir, exist_ok=True)
    image_paths = []  # List to store paths of saved images
    
    for frame_idx in range(len(vid_frames)):
        frame_image = vid_frames[frame_idx]
        frame_image = frame_image[..., ::-1]  # BGR (opencv system) to RGB (numpy system)
        frame_image = Image.fromarray(frame_image)
        vid_frames[frame_idx] = frame_image

        # Save the frame as a .jpg file in the temporary folder
        image_path = os.path.join(temp_dir, f"frame_{frame_idx:04d}.jpg")
        frame_image.save(image_path, format="JPEG")

        # Append the image path to the list
        image_paths.append(image_path)
    return vid_frames, image_paths

def visualize(pred_mask, image_path, work_dir):
    visualizer = Visualizer()
    img = cv2.imread(image_path)
    visualizer.set_image(img)
    visualizer.draw_binary_masks(pred_mask, colors='g', alphas=0.4)
    visual_result = visualizer.get_image()

    output_path = os.path.join(work_dir, os.path.basename(image_path))
    cv2.imwrite(output_path, visual_result)
    return output_path



# μ½”λ“œ 상단에 import μΆ”κ°€
from deep_translator import GoogleTranslator

# λ²ˆμ—­ ν•¨μˆ˜ μˆ˜μ •
def translate_to_korean(text):
    try:
        translator = GoogleTranslator(source='en', target='ko')
        return translator.translate(text)
    except Exception as e:
        print(f"Translation error: {e}")
        return text

@spaces.GPU
def image_vision(image_input_path, prompt):
    # ν•œκΈ€ μž…λ ₯ 확인
    is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
    
    image_path = image_input_path
    text_prompts = f"<image>{prompt}"
    image = Image.open(image_path).convert('RGB')
    input_dict = {
        'image': image,
        'text': text_prompts,
        'past_text': '',
        'mask_prompts': None,
        'tokenizer': tokenizer,
    }
    return_dict = model.predict_forward(**input_dict)
    print(return_dict)
    answer = return_dict["prediction"]
    
    # ν•œκΈ€ ν”„λ‘¬ν”„νŠΈμΈ 경우 응닡을 ν•œκΈ€λ‘œ λ²ˆμ—­
    if is_korean:
        # [SEG]λŠ” λ³΄μ‘΄ν•˜λ©΄μ„œ λ‚˜λ¨Έμ§€ ν…μŠ€νŠΈλ§Œ λ²ˆμ—­
        if '[SEG]' in answer:
            parts = answer.split('[SEG]')
            translated_parts = [translate_to_korean(part.strip()) for part in parts]
            answer = '[SEG]'.join(translated_parts)
        else:
            answer = translate_to_korean(answer)
    
    seg_image = return_dict["prediction_masks"]
    
    if '[SEG]' in answer and Visualizer is not None:
        pred_masks = seg_image[0]
        temp_dir = tempfile.mkdtemp()
        pred_mask = pred_masks
        os.makedirs(temp_dir, exist_ok=True)
        seg_result = visualize(pred_mask, image_input_path, temp_dir)
        return answer, seg_result
    else:
        return answer, None

@spaces.GPU(duration=80)
def video_vision(video_input_path, prompt, video_interval):
    # ν•œκΈ€ μž…λ ₯ 확인
    is_korean = any(ord('κ°€') <= ord(char) <= ord('힣') for char in prompt)
    
    cap = cv2.VideoCapture(video_input_path)
    original_fps = cap.get(cv2.CAP_PROP_FPS)
    frame_skip_factor = video_interval
    new_fps = original_fps / frame_skip_factor

    vid_frames, image_paths = read_video(video_input_path, video_interval)
    question = f"<image>{prompt}"
    result = model.predict_forward(
        video=vid_frames,
        text=question,
        tokenizer=tokenizer,
    )
    prediction = result['prediction']
    print(prediction)

    # ν•œκΈ€ ν”„λ‘¬ν”„νŠΈμΈ 경우 응닡을 ν•œκΈ€λ‘œ λ²ˆμ—­
    if is_korean:
        if '[SEG]' in prediction:
            parts = prediction.split('[SEG]')
            translated_parts = [translate_to_korean(part.strip()) for part in parts]
            prediction = '[SEG]'.join(translated_parts)
        else:
            prediction = translate_to_korean(prediction)

    if '[SEG]' in prediction and Visualizer is not None:
        _seg_idx = 0
        pred_masks = result['prediction_masks'][_seg_idx]
        seg_frames = []
        for frame_idx in range(len(vid_frames)):
            pred_mask = pred_masks[frame_idx]
            temp_dir = tempfile.mkdtemp()
            os.makedirs(temp_dir, exist_ok=True)
            seg_frame = visualize(pred_mask, image_paths[frame_idx], temp_dir)
            seg_frames.append(seg_frame)

        output_video = "output_video.mp4"
        frame = cv2.imread(seg_frames[0])
        height, width, layers = frame.shape
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        video = cv2.VideoWriter(output_video, fourcc, new_fps, (width, height))

        for img_path in seg_frames:
            frame = cv2.imread(img_path)
            video.write(frame)

        video.release()
        print(f"Video created successfully at {output_video}")

        return prediction, output_video
            
    else:
        return prediction, None

# Gradio UI

with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Column():
        gr.Markdown("# Sa2VA: Marrying SAM2 with LLaVA for Dense Grounded Understanding of Images and Videos")
        gr.HTML("""
        <div style="display:flex;column-gap:4px;">
            <a href="https://github.com/magic-research/Sa2VA">
                <img src='https://img.shields.io/badge/GitHub-Repo-blue'>
            </a> 
            <a href="https://arxiv.org/abs/2501.04001">
                <img src='https://img.shields.io/badge/ArXiv-Paper-red'>
            </a>
            <a href="https://huggingface.co/spaces/fffiloni/Sa2VA-simple-demo?duplicate=true">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-sm.svg" alt="Duplicate this Space">
            </a>
            <a href="https://huggingface.co/fffiloni">
                <img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg" alt="Follow me on HF">
            </a>
        </div>
        """)
        with gr.Tab("Single Image"):
            with gr.Row():
                with gr.Column():
                    image_input = gr.Image(label="Image IN", type="filepath")
                    with gr.Row():
                        instruction = gr.Textbox(label="Instruction", scale=4)
                        submit_image_btn = gr.Button("Submit", scale=1)
                with gr.Column():
                    output_res = gr.Textbox(label="Response")
                    output_image = gr.Image(label="Segmentation", type="numpy")
    
            submit_image_btn.click(
                fn = image_vision,
                inputs = [image_input, instruction],
                outputs = [output_res, output_image]
            )
        with gr.Tab("Video"):
            with gr.Row():
                with gr.Column():
                    video_input = gr.Video(label="Video IN")
                    frame_interval = gr.Slider(label="Frame interval", step=1, minimum=1, maximum=12, value=6)
                    with gr.Row():
                        vid_instruction = gr.Textbox(label="Instruction", scale=4)
                        submit_video_btn = gr.Button("Submit", scale=1)
                with gr.Column():
                    vid_output_res = gr.Textbox(label="Response")
                    output_video = gr.Video(label="Segmentation")
            
            submit_video_btn.click(
                fn = video_vision,
                inputs = [video_input, vid_instruction, frame_interval],
                outputs = [vid_output_res, output_video]
            )

demo.queue().launch(show_api=False, show_error=True)