File size: 20,376 Bytes
5e01175
a589b70
4d17fea
5e01175
4e1d3f6
 
 
 
a589b70
4e1d3f6
 
 
b86d3ec
5e01175
251060c
5e01175
 
6a5a99e
 
 
 
 
 
b86d3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bda3015
b86d3ec
 
 
 
bda3015
b86d3ec
 
 
 
bda3015
b86d3ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e01175
 
4e1d3f6
 
 
 
 
 
a589b70
 
 
4e1d3f6
 
 
 
 
 
 
 
 
f3d4b52
4e1d3f6
a589b70
 
 
 
 
 
4e1d3f6
 
a589b70
 
 
 
 
 
 
 
 
4e1d3f6
5e01175
 
 
 
 
6a5a99e
 
 
0171744
a589b70
5e01175
 
 
 
bda3015
 
 
 
5e01175
 
 
 
 
 
 
a589b70
 
5e01175
 
 
 
251060c
 
 
 
 
6a5a99e
a589b70
 
 
 
 
 
 
 
251060c
 
 
 
 
 
 
5e01175
6a5a99e
de956c8
6a5a99e
 
b86d3ec
 
6a5a99e
 
 
 
 
 
b86d3ec
6a5a99e
 
 
 
 
 
 
 
b86d3ec
6a5a99e
 
 
 
 
 
b86d3ec
de956c8
 
 
 
 
0171744
6a5a99e
 
 
251060c
 
 
b7582e0
a589b70
6a5a99e
 
 
 
 
b86d3ec
6a5a99e
bda3015
 
 
 
6a5a99e
b86d3ec
fda7af7
b86d3ec
 
fda7af7
6a5a99e
 
b86d3ec
 
 
 
 
 
62ccb16
4e1d3f6
b86d3ec
 
 
6a5a99e
 
 
a589b70
 
 
6a5a99e
5e01175
b86d3ec
5e01175
 
 
 
 
 
6a5a99e
 
 
 
a589b70
6a5a99e
5e01175
 
0171744
5e01175
 
6a5a99e
5e01175
b86d3ec
5e01175
 
 
 
ed339ed
 
 
 
5e01175
ed339ed
 
ccc40da
ed339ed
5e01175
ed339ed
 
 
5e01175
ed339ed
 
 
5e01175
 
 
 
6a5a99e
 
251060c
 
a589b70
5e01175
 
 
251060c
a589b70
 
5e01175
 
 
 
b86d3ec
5e01175
 
 
4d17fea
4e1d3f6
5e01175
b86d3ec
5e01175
 
 
 
 
 
6a5a99e
 
 
0171744
a589b70
5e01175
 
6a5a99e
 
5e01175
 
 
 
 
1171189
6a5a99e
 
 
bda3015
 
 
 
 
 
 
 
 
 
a589b70
bda3015
 
 
 
 
 
251060c
bda3015
 
 
6a5a99e
4e1d3f6
0171744
b86d3ec
 
6a5a99e
de956c8
4e1d3f6
6a5a99e
 
 
 
 
 
 
 
 
0171744
 
251060c
6a5a99e
de956c8
b86d3ec
bda3015
 
a589b70
6a5a99e
 
 
 
 
 
b86d3ec
0171744
6a5a99e
b86d3ec
4e1d3f6
6a5a99e
 
b86d3ec
62ccb16
4e1d3f6
62ccb16
 
 
 
 
 
 
 
 
b86d3ec
6a5a99e
 
b86d3ec
b7582e0
 
 
 
 
 
 
 
 
 
6a5a99e
 
 
4e1d3f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5a99e
 
 
 
 
5e01175
6a5a99e
b86d3ec
 
 
 
 
 
62ccb16
 
ed339ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
import os
from typing import Literal, List, Tuple, Optional, Dict, Any
import logging

from .pytorch_models import (
    train_model,
    PROTAC_Model,
    evaluate_model,
    get_confidence_scores,
)
from .protac_dataset import get_datasets

import torch
import optuna
from optuna.samplers import TPESampler, QMCSampler
import joblib
import pandas as pd
from sklearn.model_selection import (
    StratifiedKFold,
    StratifiedGroupKFold,
)
import numpy as np
import pytorch_lightning as pl
from torchmetrics import (
    Accuracy,
    AUROC,
    Precision,
    Recall,
    F1Score,
)


def get_dataframe_stats(
        train_df = None,
        val_df = None,
        test_df = None,
        active_label = 'Active',
    ) -> Dict:
    """ Get some statistics from the dataframes.
    
    Args:
        train_df (pd.DataFrame): The training set.
        val_df (pd.DataFrame): The validation set.
        test_df (pd.DataFrame): The test set.
    """
    stats = {}
    if train_df is not None:
        stats['train_len'] = len(train_df)
        stats['train_active_perc'] = train_df[active_label].sum() / len(train_df)
        stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df)
        stats['train_avg_tanimoto_dist'] = train_df['Avg Tanimoto'].mean()
    if val_df is not None:
        stats['val_len'] = len(val_df)
        stats['val_active_perc'] = val_df[active_label].sum() / len(val_df)
        stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df)
        stats['val_avg_tanimoto_dist'] = val_df['Avg Tanimoto'].mean()
    if test_df is not None:
        stats['test_len'] = len(test_df)
        stats['test_active_perc'] = test_df[active_label].sum() / len(test_df)
        stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
        stats['test_avg_tanimoto_dist'] = test_df['Avg Tanimoto'].mean()
    if train_df is not None and val_df is not None:
        leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
        leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
        stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot)
        stats['num_leaking_smiles_train_val'] = len(leaking_smiles)
        stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
        stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
    if train_df is not None and test_df is not None:
        leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot'])))
        leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles'])))
        stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot)
        stats['num_leaking_smiles_train_test'] = len(leaking_smiles)
        stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
        stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
    return stats


def get_majority_vote_metrics(
        test_preds: List,
        test_df: pd.DataFrame,
        active_label: str = 'Active',
) -> Dict:
    """ Get the majority vote metrics. """
    test_preds_mean = np.array(test_preds).mean(axis=0)
    logging.info(f'Test predictions: {test_preds}')
    logging.info(f'Test predictions mean: {test_preds_mean}')
    test_preds = torch.stack(test_preds)
    test_preds, _ = torch.mode(test_preds, dim=0)
    y = torch.tensor(test_df[active_label].tolist())
    # Measure the test accuracy and ROC AUC
    majority_vote_metrics = {
        'test_acc': Accuracy(task='binary')(test_preds, y).item(),
        'test_roc_auc': AUROC(task='binary')(test_preds, y).item(),
        'test_precision': Precision(task='binary')(test_preds, y).item(),
        'test_recall': Recall(task='binary')(test_preds, y).item(),
        'test_f1_score': F1Score(task='binary')(test_preds, y).item(),
    }

    # Get mean predictions
    fp_mean, fn_mean = get_confidence_scores(y, test_preds_mean)
    majority_vote_metrics['test_false_negatives_mean'] = fn_mean
    majority_vote_metrics['test_false_positives_mean'] = fp_mean

    return majority_vote_metrics

def get_suggestion(trial, dtype, hparams_range):
    if dtype == 'int':
        return trial.suggest_int(**hparams_range)
    elif dtype == 'float':
        return trial.suggest_float(**hparams_range)
    elif dtype == 'categorical':
        return trial.suggest_categorical(**hparams_range)
    else:
        raise ValueError(f'Invalid dtype for trial.suggest: {dtype}')

def pytorch_model_objective(
        trial: optuna.Trial,
        protein2embedding: Dict,
        cell2embedding: Dict,
        smiles2fp: Dict,
        train_val_df: pd.DataFrame,
        kf: StratifiedKFold | StratifiedGroupKFold,
        groups: Optional[np.array] = None,
        test_df: Optional[pd.DataFrame] = None,
        hparams_ranges: Optional[List[Tuple[str, Dict[str, Any]]]] = None,
        fast_dev_run: bool = False,
        active_label: str = 'Active',
        disabled_embeddings: List[str] = [],
        max_epochs: int = 100,
        use_logger: bool = False,
        logger_save_dir: str = 'logs',
        logger_name: str = 'cv_model',
        enable_checkpointing: bool = False,
) -> float:
    """ Objective function for hyperparameter optimization.
    
    Args:
        trial (optuna.Trial): The Optuna trial object.
        train_df (pd.DataFrame): The training set.
        val_df (pd.DataFrame): The validation set.
        hparams_ranges (List[Dict[str, Any]]): NOT IMPLEMENTED YET. Hyperparameters ranges.
            The list must be of a tuple of the type of hparam to suggest ('int', 'float', or 'categorical'), and the dictionary must contain the arguments of the corresponding trial.suggest method.
        fast_dev_run (bool): Whether to run a fast development run.
        active_label (str): The active label column.
        disabled_embeddings (List[str]): The list of disabled embeddings.
    """
    # Set fixed hyperparameters
    batch_size = 128
    apply_scaling = True # It is dynamically disabled for binary data
    use_batch_norm = True

    # Suggest hyperparameters to be used accross the CV folds
    hidden_dim = trial.suggest_categorical('hidden_dim', [16, 32, 64, 128, 256, 512])
    smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', [0] + list(range(3, 16)))
    # hidden_dim = trial.suggest_int('hidden_dim', 32, 512, step=32)
    # smote_k_neighbors = trial.suggest_int('smote_k_neighbors', 0, 12)

    # use_smote = trial.suggest_categorical('use_smote', [True, False])
    # smote_k_neighbors = smote_k_neighbors if use_smote else 0
    # dropout = trial.suggest_float('dropout', 0, 0.5)
    # use_batch_norm = trial.suggest_categorical('use_batch_norm', [True, False])

    # Optimizer parameters
    learning_rate = trial.suggest_float('learning_rate', 1e-6, 1e-1, log=True)
    beta1 = trial.suggest_float('beta1', 0.1, 0.999)
    beta2 = trial.suggest_float('beta2', 0.1, 0.999)
    eps = trial.suggest_float('eps', 1e-9, 1.0, log=True)

    # Start the CV over the folds
    X = train_val_df.copy().drop(columns=active_label)
    y = train_val_df[active_label].tolist()
    report = []
    val_preds = []
    test_preds = []
    for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
        logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
        # Get the train and val sets
        train_df = train_val_df.iloc[train_index]
        val_df = train_val_df.iloc[val_index]

        # Get some statistics from the dataframes
        stats = {
            'model_type': 'Pytorch',
            'fold': k,
            'train_len': len(train_df),
            'val_len': len(val_df),
            'train_perc': len(train_df) / len(train_val_df),
            'val_perc': len(val_df) / len(train_val_df),
        }
        stats.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
        if groups is not None:
            stats['train_unique_groups'] = len(np.unique(groups[train_index]))
            stats['val_unique_groups'] = len(np.unique(groups[val_index]))

        # At each fold, train and evaluate the Pytorch model
        # Train the model with the current set of hyperparameters
        ret = train_model(
            protein2embedding=protein2embedding,
            cell2embedding=cell2embedding,
            smiles2fp=smiles2fp,
            train_df=train_df,
            val_df=val_df,
            test_df=test_df,
            hidden_dim=hidden_dim,
            batch_size=batch_size,
            learning_rate=learning_rate,
            beta1=beta1,
            beta2=beta2,
            eps=eps,
            use_batch_norm=use_batch_norm,
            # dropout=dropout,
            max_epochs=max_epochs,
            smote_k_neighbors=smote_k_neighbors,
            apply_scaling=apply_scaling,
            fast_dev_run=fast_dev_run,
            active_label=active_label,
            return_predictions=True,
            disabled_embeddings=disabled_embeddings,
            use_logger=use_logger,
            logger_save_dir=logger_save_dir,
            logger_name=f'{logger_name}_fold{k}',
            enable_checkpointing=enable_checkpointing,
        )
        if test_df is not None:
            _, _, metrics, val_pred, test_pred = ret
            test_preds.append(test_pred)
        else:
            _, _, metrics, val_pred = ret
        stats.update(metrics)
        report.append(stats.copy())
        val_preds.append(val_pred)

    # Save the report in the trial
    trial.set_user_attr('report', report)

    # Get the majority vote for the test predictions
    if test_df is not None and not fast_dev_run:
        majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
        majority_vote_metrics.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
        trial.set_user_attr('majority_vote_metrics', majority_vote_metrics)
        logging.info(f'Majority vote metrics: {majority_vote_metrics}')

    # Get the average validation accuracy and ROC AUC accross the folds
    val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
    val_acc = np.mean([r['val_acc'] for r in report])
    logging.info(f'Average val accuracy: {val_acc}')
    logging.info(f'Average val ROC AUC: {val_roc_auc}')

    # Optuna aims to minimize the pytorch_model_objective
    return - val_roc_auc


def hyperparameter_tuning_and_training(
        protein2embedding: Dict,
        cell2embedding: Dict,
        smiles2fp: Dict,
        train_val_df: pd.DataFrame,
        test_df: pd.DataFrame,
        kf: StratifiedKFold | StratifiedGroupKFold,
        groups: Optional[np.array] = None,
        split_type: str = 'standard',
        n_models_for_test: int = 3,
        fast_dev_run: bool = False,
        n_trials: int = 50,
        logger_save_dir: str = 'logs',
        logger_name: str = 'protac_hparam_search',
        active_label: str = 'Active',
        max_epochs: int = 100,
        study_filename: Optional[str] = None,
        force_study: bool = False,
) -> tuple:
    """ Hyperparameter tuning and training of a PROTAC model.
    
    Args:
        protein2embedding (Dict): The protein to embedding dictionary.
        cell2embedding (Dict): The cell to embedding dictionary.
        smiles2fp (Dict): The SMILES to fingerprint dictionary.
        train_val_df (pd.DataFrame): The training and validation set.
        test_df (pd.DataFrame): The test set.
        kf (StratifiedKFold | StratifiedGroupKFold): The KFold object.
        groups (np.array): The groups for the StratifiedGroupKFold.
        split_type (str): The split type of the current study. Used for reporting.
        n_models_for_test (int): The number of models to train for the test set.
        fast_dev_run (bool): Whether to run a fast development run.
        n_trials (int): The number of trials for the hyperparameter search.
        logger_save_dir (str): The logger save directory.
        logger_name (str): The logger name.
        active_label (str): The active label column.
        max_epochs (int): The maximum number of epochs.
        study_filename (str): The study filename.
        force_study (bool): Whether to force the study.

    Returns:
        tuple: The trained model, the trainer, and the best metrics.
    """
    pl.seed_everything(42)

    # TODO: Make the following code more modular, i.e., the ranges shall be put
    # in dictionaries or config files or something like that.
    hparams_ranges = None

    # Set the verbosity of Optuna
    optuna.logging.set_verbosity(optuna.logging.WARNING)
    # Set a quasi-random sampler, as suggested in: https://github.com/google-research/tuning_playbook?tab=readme-ov-file#faqs
    # sampler = QMCSampler(qmc_type='halton', scramble=True, seed=42)
    sampler = TPESampler(seed=42, multivariate=True)
    # Create an Optuna study object
    study = optuna.create_study(direction='minimize', sampler=sampler)

    study_loaded = False
    if study_filename and not force_study:
        if os.path.exists(study_filename):
            study = joblib.load(study_filename)
            study_loaded = True
            logging.info(f'Loaded study from {study_filename}')
            logging.info(f'Study best params: {study.best_params}')

    if not study_loaded or force_study:
        study.optimize(
            lambda trial: pytorch_model_objective(
                trial=trial,
                protein2embedding=protein2embedding,
                cell2embedding=cell2embedding,
                smiles2fp=smiles2fp,
                train_val_df=train_val_df,
                kf=kf,
                groups=groups,
                test_df=test_df,
                hparams_ranges=hparams_ranges,
                fast_dev_run=fast_dev_run,
                active_label=active_label,
                max_epochs=max_epochs,
                disabled_embeddings=[],
            ),
            n_trials=n_trials,
        )
        if study_filename:
            joblib.dump(study, study_filename)

    cv_report = pd.DataFrame(study.best_trial.user_attrs['report'])
    hparam_report = pd.DataFrame([study.best_params])

    # Train the best CV models and store their checkpoints by running the objective
    pytorch_model_objective(
        trial=study.best_trial,
        protein2embedding=protein2embedding,
        cell2embedding=cell2embedding,
        smiles2fp=smiles2fp,
        train_val_df=train_val_df,
        kf=kf,
        groups=groups,
        test_df=test_df,
        hparams_ranges=hparams_ranges,
        fast_dev_run=fast_dev_run,
        active_label=active_label,
        max_epochs=max_epochs,
        disabled_embeddings=[],
        use_logger=True,
        logger_save_dir=logger_save_dir,
        logger_name=f'cv_model_{logger_name}',
        enable_checkpointing=True,
    )

    # Retrain N models with the best hyperparameters (measure model uncertainty)
    best_models = []
    test_report = []
    test_preds = []
    dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
    for i in range(n_models_for_test):
        pl.seed_everything(42 + i + 1)
        model, trainer, metrics, test_pred = train_model(
            protein2embedding=protein2embedding,
            cell2embedding=cell2embedding,
            smiles2fp=smiles2fp,
            train_df=train_val_df,
            val_df=test_df,
            fast_dev_run=fast_dev_run,
            active_label=active_label,
            max_epochs=max_epochs,
            disabled_embeddings=[],
            use_logger=True,
            logger_save_dir=logger_save_dir,
            logger_name=f'best_model_n{i}_{logger_name}',
            enable_checkpointing=True,
            checkpoint_model_name=f'best_model_n{i}_{split_type}',
            return_predictions=True,
            batch_size=128,
            apply_scaling=True,
            # use_batch_norm=True,
            **study.best_params,
        )
        # Rename the keys in the metrics dictionary
        metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
        metrics['model_type'] = 'Pytorch'
        metrics['test_model_id'] = i
        metrics.update(dfs_stats)

        test_report.append(metrics.copy())
        test_preds.append(test_pred)
        best_models.append({'model': model, 'trainer': trainer})
    test_report = pd.DataFrame(test_report)

    # Get the majority vote for the test predictions
    if not fast_dev_run:
        majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
        majority_vote_metrics.update(get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label))
        majority_vote_metrics_cv = study.best_trial.user_attrs['majority_vote_metrics']
        majority_vote_metrics_cv['cv_models'] = True
        majority_vote_report = pd.DataFrame([
            majority_vote_metrics,
            majority_vote_metrics_cv,
        ])
        majority_vote_report['model_type'] = 'Pytorch'
        majority_vote_report['split_type'] = split_type

    # Ablation study: disable embeddings at a time
    ablation_report = []
    dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
    disabled_embeddings_combinations = [
        ['e3'],
        ['poi'],
        ['cell'],
        ['smiles'],
        ['e3', 'cell'],
        ['poi', 'e3'],
        ['poi', 'e3', 'cell'],
    ]
    for disabled_embeddings in disabled_embeddings_combinations:
        logging.info('-' * 100)
        logging.info(f'Ablation study with disabled embeddings: {disabled_embeddings}')
        logging.info('-' * 100)
        disabled_embeddings_str = 'disabled ' + ' '.join(disabled_embeddings)
        test_preds = []
        for i, model_trainer in enumerate(best_models):
            logging.info(f'Evaluating model n.{i} on {disabled_embeddings_str}.')
            model = model_trainer['model']
            trainer = model_trainer['trainer']
            _, test_ds, _  = get_datasets(
                protein2embedding=protein2embedding,
                cell2embedding=cell2embedding,
                smiles2fp=smiles2fp,
                train_df=train_val_df,
                val_df=test_df,
                disabled_embeddings=disabled_embeddings,
                active_label=active_label,
                scaler=model.scalers,
                use_single_scaler=model.join_embeddings == 'beginning',
            )
            ret = evaluate_model(model, trainer, test_ds, batch_size=128)
            # NOTE: We are passing the test set as the validation set argument
            # Rename the keys in the metrics dictionary
            test_preds.append(ret['val_pred'])
            ret['val_metrics'] = {k.replace('val_', 'test_'): v for k, v in ret['val_metrics'].items()}
            ret['val_metrics'].update(dfs_stats)
            ret['val_metrics']['majority_vote'] = False
            ret['val_metrics']['model_type'] = 'Pytorch'
            ret['val_metrics']['disabled_embeddings'] = disabled_embeddings_str
            ablation_report.append(ret['val_metrics'].copy())

        # Get the majority vote for the test predictions
        if not fast_dev_run:
            majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
            majority_vote_metrics.update(dfs_stats)
            majority_vote_metrics['majority_vote'] = True
            majority_vote_metrics['model_type'] = 'Pytorch'
            majority_vote_metrics['disabled_embeddings'] = disabled_embeddings_str
            ablation_report.append(majority_vote_metrics.copy())

    ablation_report = pd.DataFrame(ablation_report)

    # Add a column with the split_type to all reports
    for report in [cv_report, hparam_report, test_report, ablation_report]:
        report['split_type'] = split_type

    # Return the reports
    ret = {
        'cv_report': cv_report,
        'hparam_report': hparam_report,
        'test_report': test_report,
        'ablation_report': ablation_report,
    }
    if not fast_dev_run:
        ret['majority_vote_report'] = majority_vote_report
    return ret