File size: 20,376 Bytes
5e01175 a589b70 4d17fea 5e01175 4e1d3f6 a589b70 4e1d3f6 b86d3ec 5e01175 251060c 5e01175 6a5a99e b86d3ec bda3015 b86d3ec bda3015 b86d3ec bda3015 b86d3ec 5e01175 4e1d3f6 a589b70 4e1d3f6 f3d4b52 4e1d3f6 a589b70 4e1d3f6 a589b70 4e1d3f6 5e01175 6a5a99e 0171744 a589b70 5e01175 bda3015 5e01175 a589b70 5e01175 251060c 6a5a99e a589b70 251060c 5e01175 6a5a99e de956c8 6a5a99e b86d3ec 6a5a99e b86d3ec 6a5a99e b86d3ec 6a5a99e b86d3ec de956c8 0171744 6a5a99e 251060c b7582e0 a589b70 6a5a99e b86d3ec 6a5a99e bda3015 6a5a99e b86d3ec fda7af7 b86d3ec fda7af7 6a5a99e b86d3ec 62ccb16 4e1d3f6 b86d3ec 6a5a99e a589b70 6a5a99e 5e01175 b86d3ec 5e01175 6a5a99e a589b70 6a5a99e 5e01175 0171744 5e01175 6a5a99e 5e01175 b86d3ec 5e01175 ed339ed 5e01175 ed339ed ccc40da ed339ed 5e01175 ed339ed 5e01175 ed339ed 5e01175 6a5a99e 251060c a589b70 5e01175 251060c a589b70 5e01175 b86d3ec 5e01175 4d17fea 4e1d3f6 5e01175 b86d3ec 5e01175 6a5a99e 0171744 a589b70 5e01175 6a5a99e 5e01175 1171189 6a5a99e bda3015 a589b70 bda3015 251060c bda3015 6a5a99e 4e1d3f6 0171744 b86d3ec 6a5a99e de956c8 4e1d3f6 6a5a99e 0171744 251060c 6a5a99e de956c8 b86d3ec bda3015 a589b70 6a5a99e b86d3ec 0171744 6a5a99e b86d3ec 4e1d3f6 6a5a99e b86d3ec 62ccb16 4e1d3f6 62ccb16 b86d3ec 6a5a99e b86d3ec b7582e0 6a5a99e 4e1d3f6 6a5a99e 5e01175 6a5a99e b86d3ec 62ccb16 ed339ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 |
import os
from typing import Literal, List, Tuple, Optional, Dict, Any
import logging
from .pytorch_models import (
train_model,
PROTAC_Model,
evaluate_model,
get_confidence_scores,
)
from .protac_dataset import get_datasets
import torch
import optuna
from optuna.samplers import TPESampler, QMCSampler
import joblib
import pandas as pd
from sklearn.model_selection import (
StratifiedKFold,
StratifiedGroupKFold,
)
import numpy as np
import pytorch_lightning as pl
from torchmetrics import (
Accuracy,
AUROC,
Precision,
Recall,
F1Score,
)
def get_dataframe_stats(
train_df = None,
val_df = None,
test_df = None,
active_label = 'Active',
) -> Dict:
""" Get some statistics from the dataframes.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
"""
stats = {}
if train_df is not None:
stats['train_len'] = len(train_df)
stats['train_active_perc'] = train_df[active_label].sum() / len(train_df)
stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df)
stats['train_avg_tanimoto_dist'] = train_df['Avg Tanimoto'].mean()
if val_df is not None:
stats['val_len'] = len(val_df)
stats['val_active_perc'] = val_df[active_label].sum() / len(val_df)
stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df)
stats['val_avg_tanimoto_dist'] = val_df['Avg Tanimoto'].mean()
if test_df is not None:
stats['test_len'] = len(test_df)
stats['test_active_perc'] = test_df[active_label].sum() / len(test_df)
stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
stats['test_avg_tanimoto_dist'] = test_df['Avg Tanimoto'].mean()
if train_df is not None and val_df is not None:
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot)
stats['num_leaking_smiles_train_val'] = len(leaking_smiles)
stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
if train_df is not None and test_df is not None:
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles'])))
stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot)
stats['num_leaking_smiles_train_test'] = len(leaking_smiles)
stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
return stats
def get_majority_vote_metrics(
test_preds: List,
test_df: pd.DataFrame,
active_label: str = 'Active',
) -> Dict:
""" Get the majority vote metrics. """
test_preds_mean = np.array(test_preds).mean(axis=0)
logging.info(f'Test predictions: {test_preds}')
logging.info(f'Test predictions mean: {test_preds_mean}')
test_preds = torch.stack(test_preds)
test_preds, _ = torch.mode(test_preds, dim=0)
y = torch.tensor(test_df[active_label].tolist())
# Measure the test accuracy and ROC AUC
majority_vote_metrics = {
'test_acc': Accuracy(task='binary')(test_preds, y).item(),
'test_roc_auc': AUROC(task='binary')(test_preds, y).item(),
'test_precision': Precision(task='binary')(test_preds, y).item(),
'test_recall': Recall(task='binary')(test_preds, y).item(),
'test_f1_score': F1Score(task='binary')(test_preds, y).item(),
}
# Get mean predictions
fp_mean, fn_mean = get_confidence_scores(y, test_preds_mean)
majority_vote_metrics['test_false_negatives_mean'] = fn_mean
majority_vote_metrics['test_false_positives_mean'] = fp_mean
return majority_vote_metrics
def get_suggestion(trial, dtype, hparams_range):
if dtype == 'int':
return trial.suggest_int(**hparams_range)
elif dtype == 'float':
return trial.suggest_float(**hparams_range)
elif dtype == 'categorical':
return trial.suggest_categorical(**hparams_range)
else:
raise ValueError(f'Invalid dtype for trial.suggest: {dtype}')
def pytorch_model_objective(
trial: optuna.Trial,
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_val_df: pd.DataFrame,
kf: StratifiedKFold | StratifiedGroupKFold,
groups: Optional[np.array] = None,
test_df: Optional[pd.DataFrame] = None,
hparams_ranges: Optional[List[Tuple[str, Dict[str, Any]]]] = None,
fast_dev_run: bool = False,
active_label: str = 'Active',
disabled_embeddings: List[str] = [],
max_epochs: int = 100,
use_logger: bool = False,
logger_save_dir: str = 'logs',
logger_name: str = 'cv_model',
enable_checkpointing: bool = False,
) -> float:
""" Objective function for hyperparameter optimization.
Args:
trial (optuna.Trial): The Optuna trial object.
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
hparams_ranges (List[Dict[str, Any]]): NOT IMPLEMENTED YET. Hyperparameters ranges.
The list must be of a tuple of the type of hparam to suggest ('int', 'float', or 'categorical'), and the dictionary must contain the arguments of the corresponding trial.suggest method.
fast_dev_run (bool): Whether to run a fast development run.
active_label (str): The active label column.
disabled_embeddings (List[str]): The list of disabled embeddings.
"""
# Set fixed hyperparameters
batch_size = 128
apply_scaling = True # It is dynamically disabled for binary data
use_batch_norm = True
# Suggest hyperparameters to be used accross the CV folds
hidden_dim = trial.suggest_categorical('hidden_dim', [16, 32, 64, 128, 256, 512])
smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', [0] + list(range(3, 16)))
# hidden_dim = trial.suggest_int('hidden_dim', 32, 512, step=32)
# smote_k_neighbors = trial.suggest_int('smote_k_neighbors', 0, 12)
# use_smote = trial.suggest_categorical('use_smote', [True, False])
# smote_k_neighbors = smote_k_neighbors if use_smote else 0
# dropout = trial.suggest_float('dropout', 0, 0.5)
# use_batch_norm = trial.suggest_categorical('use_batch_norm', [True, False])
# Optimizer parameters
learning_rate = trial.suggest_float('learning_rate', 1e-6, 1e-1, log=True)
beta1 = trial.suggest_float('beta1', 0.1, 0.999)
beta2 = trial.suggest_float('beta2', 0.1, 0.999)
eps = trial.suggest_float('eps', 1e-9, 1.0, log=True)
# Start the CV over the folds
X = train_val_df.copy().drop(columns=active_label)
y = train_val_df[active_label].tolist()
report = []
val_preds = []
test_preds = []
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
# Get the train and val sets
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
# Get some statistics from the dataframes
stats = {
'model_type': 'Pytorch',
'fold': k,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
}
stats.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
if groups is not None:
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
# At each fold, train and evaluate the Pytorch model
# Train the model with the current set of hyperparameters
ret = train_model(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
test_df=test_df,
hidden_dim=hidden_dim,
batch_size=batch_size,
learning_rate=learning_rate,
beta1=beta1,
beta2=beta2,
eps=eps,
use_batch_norm=use_batch_norm,
# dropout=dropout,
max_epochs=max_epochs,
smote_k_neighbors=smote_k_neighbors,
apply_scaling=apply_scaling,
fast_dev_run=fast_dev_run,
active_label=active_label,
return_predictions=True,
disabled_embeddings=disabled_embeddings,
use_logger=use_logger,
logger_save_dir=logger_save_dir,
logger_name=f'{logger_name}_fold{k}',
enable_checkpointing=enable_checkpointing,
)
if test_df is not None:
_, _, metrics, val_pred, test_pred = ret
test_preds.append(test_pred)
else:
_, _, metrics, val_pred = ret
stats.update(metrics)
report.append(stats.copy())
val_preds.append(val_pred)
# Save the report in the trial
trial.set_user_attr('report', report)
# Get the majority vote for the test predictions
if test_df is not None and not fast_dev_run:
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
trial.set_user_attr('majority_vote_metrics', majority_vote_metrics)
logging.info(f'Majority vote metrics: {majority_vote_metrics}')
# Get the average validation accuracy and ROC AUC accross the folds
val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
val_acc = np.mean([r['val_acc'] for r in report])
logging.info(f'Average val accuracy: {val_acc}')
logging.info(f'Average val ROC AUC: {val_roc_auc}')
# Optuna aims to minimize the pytorch_model_objective
return - val_roc_auc
def hyperparameter_tuning_and_training(
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_val_df: pd.DataFrame,
test_df: pd.DataFrame,
kf: StratifiedKFold | StratifiedGroupKFold,
groups: Optional[np.array] = None,
split_type: str = 'standard',
n_models_for_test: int = 3,
fast_dev_run: bool = False,
n_trials: int = 50,
logger_save_dir: str = 'logs',
logger_name: str = 'protac_hparam_search',
active_label: str = 'Active',
max_epochs: int = 100,
study_filename: Optional[str] = None,
force_study: bool = False,
) -> tuple:
""" Hyperparameter tuning and training of a PROTAC model.
Args:
protein2embedding (Dict): The protein to embedding dictionary.
cell2embedding (Dict): The cell to embedding dictionary.
smiles2fp (Dict): The SMILES to fingerprint dictionary.
train_val_df (pd.DataFrame): The training and validation set.
test_df (pd.DataFrame): The test set.
kf (StratifiedKFold | StratifiedGroupKFold): The KFold object.
groups (np.array): The groups for the StratifiedGroupKFold.
split_type (str): The split type of the current study. Used for reporting.
n_models_for_test (int): The number of models to train for the test set.
fast_dev_run (bool): Whether to run a fast development run.
n_trials (int): The number of trials for the hyperparameter search.
logger_save_dir (str): The logger save directory.
logger_name (str): The logger name.
active_label (str): The active label column.
max_epochs (int): The maximum number of epochs.
study_filename (str): The study filename.
force_study (bool): Whether to force the study.
Returns:
tuple: The trained model, the trainer, and the best metrics.
"""
pl.seed_everything(42)
# TODO: Make the following code more modular, i.e., the ranges shall be put
# in dictionaries or config files or something like that.
hparams_ranges = None
# Set the verbosity of Optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
# Set a quasi-random sampler, as suggested in: https://github.com/google-research/tuning_playbook?tab=readme-ov-file#faqs
# sampler = QMCSampler(qmc_type='halton', scramble=True, seed=42)
sampler = TPESampler(seed=42, multivariate=True)
# Create an Optuna study object
study = optuna.create_study(direction='minimize', sampler=sampler)
study_loaded = False
if study_filename and not force_study:
if os.path.exists(study_filename):
study = joblib.load(study_filename)
study_loaded = True
logging.info(f'Loaded study from {study_filename}')
logging.info(f'Study best params: {study.best_params}')
if not study_loaded or force_study:
study.optimize(
lambda trial: pytorch_model_objective(
trial=trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_val_df=train_val_df,
kf=kf,
groups=groups,
test_df=test_df,
hparams_ranges=hparams_ranges,
fast_dev_run=fast_dev_run,
active_label=active_label,
max_epochs=max_epochs,
disabled_embeddings=[],
),
n_trials=n_trials,
)
if study_filename:
joblib.dump(study, study_filename)
cv_report = pd.DataFrame(study.best_trial.user_attrs['report'])
hparam_report = pd.DataFrame([study.best_params])
# Train the best CV models and store their checkpoints by running the objective
pytorch_model_objective(
trial=study.best_trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_val_df=train_val_df,
kf=kf,
groups=groups,
test_df=test_df,
hparams_ranges=hparams_ranges,
fast_dev_run=fast_dev_run,
active_label=active_label,
max_epochs=max_epochs,
disabled_embeddings=[],
use_logger=True,
logger_save_dir=logger_save_dir,
logger_name=f'cv_model_{logger_name}',
enable_checkpointing=True,
)
# Retrain N models with the best hyperparameters (measure model uncertainty)
best_models = []
test_report = []
test_preds = []
dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
for i in range(n_models_for_test):
pl.seed_everything(42 + i + 1)
model, trainer, metrics, test_pred = train_model(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_val_df,
val_df=test_df,
fast_dev_run=fast_dev_run,
active_label=active_label,
max_epochs=max_epochs,
disabled_embeddings=[],
use_logger=True,
logger_save_dir=logger_save_dir,
logger_name=f'best_model_n{i}_{logger_name}',
enable_checkpointing=True,
checkpoint_model_name=f'best_model_n{i}_{split_type}',
return_predictions=True,
batch_size=128,
apply_scaling=True,
# use_batch_norm=True,
**study.best_params,
)
# Rename the keys in the metrics dictionary
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
metrics['model_type'] = 'Pytorch'
metrics['test_model_id'] = i
metrics.update(dfs_stats)
test_report.append(metrics.copy())
test_preds.append(test_pred)
best_models.append({'model': model, 'trainer': trainer})
test_report = pd.DataFrame(test_report)
# Get the majority vote for the test predictions
if not fast_dev_run:
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label))
majority_vote_metrics_cv = study.best_trial.user_attrs['majority_vote_metrics']
majority_vote_metrics_cv['cv_models'] = True
majority_vote_report = pd.DataFrame([
majority_vote_metrics,
majority_vote_metrics_cv,
])
majority_vote_report['model_type'] = 'Pytorch'
majority_vote_report['split_type'] = split_type
# Ablation study: disable embeddings at a time
ablation_report = []
dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
disabled_embeddings_combinations = [
['e3'],
['poi'],
['cell'],
['smiles'],
['e3', 'cell'],
['poi', 'e3'],
['poi', 'e3', 'cell'],
]
for disabled_embeddings in disabled_embeddings_combinations:
logging.info('-' * 100)
logging.info(f'Ablation study with disabled embeddings: {disabled_embeddings}')
logging.info('-' * 100)
disabled_embeddings_str = 'disabled ' + ' '.join(disabled_embeddings)
test_preds = []
for i, model_trainer in enumerate(best_models):
logging.info(f'Evaluating model n.{i} on {disabled_embeddings_str}.')
model = model_trainer['model']
trainer = model_trainer['trainer']
_, test_ds, _ = get_datasets(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_val_df,
val_df=test_df,
disabled_embeddings=disabled_embeddings,
active_label=active_label,
scaler=model.scalers,
use_single_scaler=model.join_embeddings == 'beginning',
)
ret = evaluate_model(model, trainer, test_ds, batch_size=128)
# NOTE: We are passing the test set as the validation set argument
# Rename the keys in the metrics dictionary
test_preds.append(ret['val_pred'])
ret['val_metrics'] = {k.replace('val_', 'test_'): v for k, v in ret['val_metrics'].items()}
ret['val_metrics'].update(dfs_stats)
ret['val_metrics']['majority_vote'] = False
ret['val_metrics']['model_type'] = 'Pytorch'
ret['val_metrics']['disabled_embeddings'] = disabled_embeddings_str
ablation_report.append(ret['val_metrics'].copy())
# Get the majority vote for the test predictions
if not fast_dev_run:
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(dfs_stats)
majority_vote_metrics['majority_vote'] = True
majority_vote_metrics['model_type'] = 'Pytorch'
majority_vote_metrics['disabled_embeddings'] = disabled_embeddings_str
ablation_report.append(majority_vote_metrics.copy())
ablation_report = pd.DataFrame(ablation_report)
# Add a column with the split_type to all reports
for report in [cv_report, hparam_report, test_report, ablation_report]:
report['split_type'] = split_type
# Return the reports
ret = {
'cv_report': cv_report,
'hparam_report': hparam_report,
'test_report': test_report,
'ablation_report': ablation_report,
}
if not fast_dev_run:
ret['majority_vote_report'] = majority_vote_report
return ret |