Commit
·
6a5a99e
1
Parent(s):
4d17fea
Refactored experiments + fixed bug in dataset when applying scaling to val and test sets
Browse files- README.md +37 -0
- protac_degradation_predictor/optuna_utils.py +150 -55
- protac_degradation_predictor/protac_dataset.py +9 -6
- protac_degradation_predictor/pytorch_models.py +26 -20
- src/run_experiments.py +151 -113
README.md
CHANGED
@@ -1,5 +1,42 @@
|
|
1 |
# PROTAC-Degradation-Predictor
|
|
|
2 |
Predicting PROTAC protein degradation activity via machine learning.
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
> If you're coming from my [thesis repo](https://github.com/ribesstefano/Machine-Learning-for-Predicting-Targeted-Protein-Degradation), I just wanted to create a separate and "less generic" repo for fast prototyping new ideas.
|
5 |
> Stefano.
|
|
|
1 |
# PROTAC-Degradation-Predictor
|
2 |
+
|
3 |
Predicting PROTAC protein degradation activity via machine learning.
|
4 |
|
5 |
+
## Data Curation
|
6 |
+
|
7 |
+
For data curation code, please refer to the code in the Jupyter notebooks [`data_curation.ipynb`](notebooks/data_curation.ipynb).
|
8 |
+
|
9 |
+
## Installing the Package
|
10 |
+
|
11 |
+
To install the package, run the following command:
|
12 |
+
|
13 |
+
```bash
|
14 |
+
pip install .
|
15 |
+
```
|
16 |
+
|
17 |
+
## Running the Package
|
18 |
+
|
19 |
+
To run the package after installation, here is an example snippet:
|
20 |
+
|
21 |
+
```python
|
22 |
+
import protac_degradation_predictor as pdp
|
23 |
+
|
24 |
+
protac_smiles = 'CC(C)(C)OC(=O)N1CCN(CC1)C2=CC(=C(C=C2)C(=O)NC3=CC(=C(C=C3)F)Cl)C(=O)NC4=CC=C(C=C4)F'
|
25 |
+
e3_ligase = 'VHL'
|
26 |
+
target_uniprot = 'P04637'
|
27 |
+
cell_line = 'HeLa'
|
28 |
+
|
29 |
+
active_protac = pdp.is_protac_active(
|
30 |
+
protac_smiles,
|
31 |
+
e3_ligase,
|
32 |
+
target_uniprot,
|
33 |
+
cell_line,
|
34 |
+
device='gpu', # Default to 'cpu'
|
35 |
+
proba_threshold=0.5, # Default value
|
36 |
+
)
|
37 |
+
|
38 |
+
print(f'The given PROTAC is: {"active" if active_protac else "inactive"}')
|
39 |
+
```
|
40 |
+
|
41 |
> If you're coming from my [thesis repo](https://github.com/ribesstefano/Machine-Learning-for-Predicting-Targeted-Protein-Degradation), I just wanted to create a separate and "less generic" repo for fast prototyping new ideas.
|
42 |
> Stefano.
|
protac_degradation_predictor/optuna_utils.py
CHANGED
@@ -21,6 +21,12 @@ from sklearn.ensemble import (
|
|
21 |
)
|
22 |
from sklearn.linear_model import LogisticRegression
|
23 |
from sklearn.svm import SVC
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
def pytorch_model_objective(
|
@@ -28,8 +34,9 @@ def pytorch_model_objective(
|
|
28 |
protein2embedding: Dict,
|
29 |
cell2embedding: Dict,
|
30 |
smiles2fp: Dict,
|
31 |
-
|
32 |
-
|
|
|
33 |
hidden_dim_options: List[int] = [256, 512, 768],
|
34 |
batch_size_options: List[int] = [8, 16, 32],
|
35 |
learning_rate_options: Tuple[float, float] = (1e-5, 1e-3),
|
@@ -55,7 +62,7 @@ def pytorch_model_objective(
|
|
55 |
active_label (str): The active label column.
|
56 |
disabled_embeddings (List[str]): The list of disabled embeddings.
|
57 |
"""
|
58 |
-
#
|
59 |
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
|
60 |
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
|
61 |
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
|
@@ -65,49 +72,90 @@ def pytorch_model_objective(
|
|
65 |
apply_scaling = trial.suggest_categorical('apply_scaling', [True, False])
|
66 |
dropout = trial.suggest_float('dropout', *dropout_options)
|
67 |
|
68 |
-
#
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
join_embeddings=join_embeddings,
|
78 |
-
learning_rate=learning_rate,
|
79 |
-
dropout=dropout,
|
80 |
-
max_epochs=max_epochs,
|
81 |
-
smote_k_neighbors=smote_k_neighbors,
|
82 |
-
apply_scaling=apply_scaling,
|
83 |
-
use_smote=use_smote,
|
84 |
-
use_logger=False,
|
85 |
-
fast_dev_run=fast_dev_run,
|
86 |
-
active_label=active_label,
|
87 |
-
disabled_embeddings=disabled_embeddings,
|
88 |
-
)
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
# Optuna aims to minimize the pytorch_model_objective
|
96 |
-
return
|
97 |
|
98 |
|
99 |
def hyperparameter_tuning_and_training(
|
100 |
protein2embedding: Dict,
|
101 |
cell2embedding: Dict,
|
102 |
smiles2fp: Dict,
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
fast_dev_run: bool = False,
|
107 |
n_trials: int = 50,
|
108 |
logger_name: str = 'protac_hparam_search',
|
109 |
active_label: str = 'Active',
|
110 |
-
|
111 |
study_filename: Optional[str] = None,
|
112 |
) -> tuple:
|
113 |
""" Hyperparameter tuning and training of a PROTAC model.
|
@@ -125,6 +173,8 @@ def hyperparameter_tuning_and_training(
|
|
125 |
Returns:
|
126 |
tuple: The trained model, the trainer, and the best metrics.
|
127 |
"""
|
|
|
|
|
128 |
# Define the search space
|
129 |
hidden_dim_options = [256, 512, 768]
|
130 |
batch_size_options = [8, 16, 32]
|
@@ -151,42 +201,87 @@ def hyperparameter_tuning_and_training(
|
|
151 |
protein2embedding=protein2embedding,
|
152 |
cell2embedding=cell2embedding,
|
153 |
smiles2fp=smiles2fp,
|
154 |
-
|
155 |
-
|
|
|
156 |
hidden_dim_options=hidden_dim_options,
|
157 |
batch_size_options=batch_size_options,
|
158 |
learning_rate_options=learning_rate_options,
|
159 |
smote_k_neighbors_options=smote_k_neighbors_options,
|
160 |
fast_dev_run=fast_dev_run,
|
161 |
active_label=active_label,
|
162 |
-
|
|
|
163 |
),
|
164 |
n_trials=n_trials,
|
165 |
)
|
166 |
if study_filename:
|
167 |
joblib.dump(study, study_filename)
|
|
|
|
|
168 |
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
#
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
188 |
-
#
|
189 |
-
|
|
|
|
|
|
|
|
|
190 |
|
191 |
|
192 |
def sklearn_model_objective(
|
|
|
21 |
)
|
22 |
from sklearn.linear_model import LogisticRegression
|
23 |
from sklearn.svm import SVC
|
24 |
+
from sklearn.model_selection import (
|
25 |
+
StratifiedKFold,
|
26 |
+
StratifiedGroupKFold,
|
27 |
+
)
|
28 |
+
import numpy as np
|
29 |
+
import pytorch_lightning as pl
|
30 |
|
31 |
|
32 |
def pytorch_model_objective(
|
|
|
34 |
protein2embedding: Dict,
|
35 |
cell2embedding: Dict,
|
36 |
smiles2fp: Dict,
|
37 |
+
train_val_df: pd.DataFrame,
|
38 |
+
kf: StratifiedKFold | StratifiedGroupKFold,
|
39 |
+
groups: Optional[np.array] = None,
|
40 |
hidden_dim_options: List[int] = [256, 512, 768],
|
41 |
batch_size_options: List[int] = [8, 16, 32],
|
42 |
learning_rate_options: Tuple[float, float] = (1e-5, 1e-3),
|
|
|
62 |
active_label (str): The active label column.
|
63 |
disabled_embeddings (List[str]): The list of disabled embeddings.
|
64 |
"""
|
65 |
+
# Suggest hyperparameters to be used accross the CV folds
|
66 |
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
|
67 |
batch_size = trial.suggest_categorical('batch_size', batch_size_options)
|
68 |
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
|
|
|
72 |
apply_scaling = trial.suggest_categorical('apply_scaling', [True, False])
|
73 |
dropout = trial.suggest_float('dropout', *dropout_options)
|
74 |
|
75 |
+
# Start the CV over the folds
|
76 |
+
X = train_val_df.drop(columns=active_label)
|
77 |
+
y = train_val_df[active_label].tolist()
|
78 |
+
report = []
|
79 |
+
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
|
80 |
+
logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
|
81 |
+
# Get the train and val sets
|
82 |
+
train_df = train_val_df.iloc[train_index]
|
83 |
+
val_df = train_val_df.iloc[val_index]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Check for data leakage and get some statistics
|
86 |
+
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
|
87 |
+
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
|
88 |
+
stats = {
|
89 |
+
'model_type': 'Pytorch',
|
90 |
+
'fold': k,
|
91 |
+
'train_len': len(train_df),
|
92 |
+
'val_len': len(val_df),
|
93 |
+
'train_perc': len(train_df) / len(train_val_df),
|
94 |
+
'val_perc': len(val_df) / len(train_val_df),
|
95 |
+
'train_active_perc': train_df[active_label].sum() / len(train_df),
|
96 |
+
'train_inactive_perc': (len(train_df) - train_df[active_label].sum()) / len(train_df),
|
97 |
+
'val_active_perc': val_df[active_label].sum() / len(val_df),
|
98 |
+
'val_inactive_perc': (len(val_df) - val_df[active_label].sum()) / len(val_df),
|
99 |
+
'num_leaking_uniprot': len(leaking_uniprot),
|
100 |
+
'num_leaking_smiles': len(leaking_smiles),
|
101 |
+
'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
|
102 |
+
'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
|
103 |
+
}
|
104 |
+
if groups is not None:
|
105 |
+
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
|
106 |
+
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
|
107 |
+
|
108 |
+
# At each fold, train and evaluate the Pytorch model
|
109 |
+
# Train the model with the current set of hyperparameters
|
110 |
+
_, _, metrics = train_model(
|
111 |
+
protein2embedding,
|
112 |
+
cell2embedding,
|
113 |
+
smiles2fp,
|
114 |
+
train_df,
|
115 |
+
val_df,
|
116 |
+
hidden_dim=hidden_dim,
|
117 |
+
batch_size=batch_size,
|
118 |
+
join_embeddings=join_embeddings,
|
119 |
+
learning_rate=learning_rate,
|
120 |
+
dropout=dropout,
|
121 |
+
max_epochs=max_epochs,
|
122 |
+
smote_k_neighbors=smote_k_neighbors,
|
123 |
+
apply_scaling=apply_scaling,
|
124 |
+
use_smote=use_smote,
|
125 |
+
use_logger=False,
|
126 |
+
fast_dev_run=fast_dev_run,
|
127 |
+
active_label=active_label,
|
128 |
+
disabled_embeddings=disabled_embeddings,
|
129 |
+
)
|
130 |
+
stats.update(metrics)
|
131 |
+
report.append(stats.copy())
|
132 |
+
|
133 |
+
# Get the average validation accuracy and ROC AUC accross the folds
|
134 |
+
val_acc = np.mean([r['val_acc'] for r in report])
|
135 |
+
val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
|
136 |
+
|
137 |
+
# Save the report in the trial
|
138 |
+
trial.set_user_attr('report', report)
|
139 |
|
140 |
# Optuna aims to minimize the pytorch_model_objective
|
141 |
+
return - val_acc - val_roc_auc
|
142 |
|
143 |
|
144 |
def hyperparameter_tuning_and_training(
|
145 |
protein2embedding: Dict,
|
146 |
cell2embedding: Dict,
|
147 |
smiles2fp: Dict,
|
148 |
+
train_val_df: pd.DataFrame,
|
149 |
+
test_df: pd.DataFrame,
|
150 |
+
kf: StratifiedKFold | StratifiedGroupKFold,
|
151 |
+
groups: Optional[np.array] = None,
|
152 |
+
split_type: str = 'random',
|
153 |
+
n_models_for_test: int = 3,
|
154 |
fast_dev_run: bool = False,
|
155 |
n_trials: int = 50,
|
156 |
logger_name: str = 'protac_hparam_search',
|
157 |
active_label: str = 'Active',
|
158 |
+
max_epochs: int = 100,
|
159 |
study_filename: Optional[str] = None,
|
160 |
) -> tuple:
|
161 |
""" Hyperparameter tuning and training of a PROTAC model.
|
|
|
173 |
Returns:
|
174 |
tuple: The trained model, the trainer, and the best metrics.
|
175 |
"""
|
176 |
+
pl.seed_everything(42)
|
177 |
+
|
178 |
# Define the search space
|
179 |
hidden_dim_options = [256, 512, 768]
|
180 |
batch_size_options = [8, 16, 32]
|
|
|
201 |
protein2embedding=protein2embedding,
|
202 |
cell2embedding=cell2embedding,
|
203 |
smiles2fp=smiles2fp,
|
204 |
+
train_val_df=train_val_df,
|
205 |
+
kf=kf,
|
206 |
+
groups=groups,
|
207 |
hidden_dim_options=hidden_dim_options,
|
208 |
batch_size_options=batch_size_options,
|
209 |
learning_rate_options=learning_rate_options,
|
210 |
smote_k_neighbors_options=smote_k_neighbors_options,
|
211 |
fast_dev_run=fast_dev_run,
|
212 |
active_label=active_label,
|
213 |
+
max_epochs=max_epochs,
|
214 |
+
disabled_embeddings=[],
|
215 |
),
|
216 |
n_trials=n_trials,
|
217 |
)
|
218 |
if study_filename:
|
219 |
joblib.dump(study, study_filename)
|
220 |
+
cv_report = pd.DataFrame(study.best_trial.user_attrs['report'])
|
221 |
+
hparam_report = pd.DataFrame([study.best_params])
|
222 |
|
223 |
+
test_report = []
|
224 |
+
# Retrain N models with the best hyperparameters (measure model uncertainty)
|
225 |
+
for i in range(n_models_for_test):
|
226 |
+
pl.seed_everything(42 + i)
|
227 |
+
_, _, metrics = train_model(
|
228 |
+
protein2embedding=protein2embedding,
|
229 |
+
cell2embedding=cell2embedding,
|
230 |
+
smiles2fp=smiles2fp,
|
231 |
+
train_df=train_val_df,
|
232 |
+
val_df=test_df,
|
233 |
+
use_logger=True,
|
234 |
+
fast_dev_run=fast_dev_run,
|
235 |
+
active_label=active_label,
|
236 |
+
max_epochs=max_epochs,
|
237 |
+
disabled_embeddings=[],
|
238 |
+
logger_name=f'{logger_name}_best_model_{i}',
|
239 |
+
enable_checkpointing=True,
|
240 |
+
checkpoint_model_name=f'best_model_{split_type}_{i}',
|
241 |
+
**study.best_params,
|
242 |
+
)
|
243 |
+
# Rename the keys in the metrics dictionary
|
244 |
+
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
|
245 |
+
metrics = {k.replace('train_', 'train_val_'): v for k, v in metrics.items()}
|
246 |
+
metrics['model_type'] = 'Pytorch'
|
247 |
+
metrics['test_model_id'] = i
|
248 |
+
test_report.append(metrics.copy())
|
249 |
+
test_report = pd.DataFrame(test_report)
|
250 |
|
251 |
+
# Ablation study: disable embeddings at a time
|
252 |
+
ablation_report = []
|
253 |
+
for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
|
254 |
+
logging.info('-' * 100)
|
255 |
+
logging.info(f'Ablation study with disabled embeddings: {disabled_embeddings}')
|
256 |
+
logging.info('-' * 100)
|
257 |
+
_, _, metrics = train_model(
|
258 |
+
protein2embedding=protein2embedding,
|
259 |
+
cell2embedding=cell2embedding,
|
260 |
+
smiles2fp=smiles2fp,
|
261 |
+
train_df=train_val_df,
|
262 |
+
val_df=test_df,
|
263 |
+
fast_dev_run=fast_dev_run,
|
264 |
+
active_label=active_label,
|
265 |
+
max_epochs=max_epochs,
|
266 |
+
use_logger=True,
|
267 |
+
logger_name=f'{logger_name}_disabled-{"-".join(disabled_embeddings)}',
|
268 |
+
disabled_embeddings=disabled_embeddings,
|
269 |
+
**study.best_params,
|
270 |
+
)
|
271 |
+
# Rename the keys in the metrics dictionary
|
272 |
+
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
|
273 |
+
metrics = {k.replace('train_', 'train_val_'): v for k, v in metrics.items()}
|
274 |
+
metrics['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
|
275 |
+
metrics['model_type'] = 'Pytorch'
|
276 |
+
ablation_report.append(metrics.copy())
|
277 |
+
ablation_report = pd.DataFrame(ablation_report)
|
278 |
|
279 |
+
# Add a column with the split_type to all reports
|
280 |
+
for report in [cv_report, hparam_report, test_report, ablation_report]:
|
281 |
+
report['split_type'] = split_type
|
282 |
+
|
283 |
+
# Return the reports
|
284 |
+
return cv_report, hparam_report, test_report, ablation_report
|
285 |
|
286 |
|
287 |
def sklearn_model_objective(
|
protac_degradation_predictor/protac_dataset.py
CHANGED
@@ -146,12 +146,15 @@ class PROTAC_Dataset(Dataset):
|
|
146 |
scalers (dict): The scalers for each feature.
|
147 |
use_single_scaler (bool): Whether to use a single scaler for all features.
|
148 |
"""
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
if use_single_scaler
|
153 |
-
|
154 |
-
|
|
|
|
|
|
|
155 |
if use_single_scaler:
|
156 |
embeddings = np.hstack([
|
157 |
np.array(self.data['Smiles'].tolist()),
|
|
|
146 |
scalers (dict): The scalers for each feature.
|
147 |
use_single_scaler (bool): Whether to use a single scaler for all features.
|
148 |
"""
|
149 |
+
# TODO: The following check is WRONG: for val and test sets I must NOT
|
150 |
+
# use run the fit_scaling method, but I must use the scalers from the
|
151 |
+
# training set.
|
152 |
+
# if self.use_single_scaler is None:
|
153 |
+
# raise ValueError(
|
154 |
+
# "The fit_scaling method must be called before apply_scaling.")
|
155 |
+
# if use_single_scaler != self.use_single_scaler:
|
156 |
+
# raise ValueError(
|
157 |
+
# f"The use_single_scaler parameter must be the same as the one used in the fit_scaling method. Got {use_single_scaler}, previously {self.use_single_scaler}.")
|
158 |
if use_single_scaler:
|
159 |
embeddings = np.hstack([
|
160 |
np.array(self.data['Smiles'].tolist()),
|
protac_degradation_predictor/pytorch_models.py
CHANGED
@@ -2,7 +2,7 @@ import warnings
|
|
2 |
from typing import Literal, List, Tuple, Optional, Dict
|
3 |
|
4 |
from .protac_dataset import PROTAC_Dataset
|
5 |
-
from .config import
|
6 |
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
@@ -28,10 +28,10 @@ class PROTAC_Predictor(nn.Module):
|
|
28 |
def __init__(
|
29 |
self,
|
30 |
hidden_dim: int,
|
31 |
-
smiles_emb_dim: int =
|
32 |
-
poi_emb_dim: int =
|
33 |
-
e3_emb_dim: int =
|
34 |
-
cell_emb_dim: int =
|
35 |
dropout: float = 0.2,
|
36 |
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
|
37 |
disabled_embeddings: list = [],
|
@@ -131,10 +131,10 @@ class PROTAC_Model(pl.LightningModule):
|
|
131 |
def __init__(
|
132 |
self,
|
133 |
hidden_dim: int,
|
134 |
-
smiles_emb_dim: int =
|
135 |
-
poi_emb_dim: int =
|
136 |
-
e3_emb_dim: int =
|
137 |
-
cell_emb_dim: int =
|
138 |
batch_size: int = 32,
|
139 |
learning_rate: float = 1e-3,
|
140 |
dropout: float = 0.2,
|
@@ -330,7 +330,10 @@ def train_model(
|
|
330 |
learning_rate: float = 2e-5,
|
331 |
dropout: float = 0.2,
|
332 |
max_epochs: int = 50,
|
333 |
-
smiles_emb_dim: int =
|
|
|
|
|
|
|
334 |
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
|
335 |
smote_k_neighbors:int = 5,
|
336 |
use_smote: bool = True,
|
@@ -339,6 +342,8 @@ def train_model(
|
|
339 |
fast_dev_run: bool = False,
|
340 |
use_logger: bool = True,
|
341 |
logger_name: str = 'protac',
|
|
|
|
|
342 |
disabled_embeddings: List[str] = [],
|
343 |
) -> tuple:
|
344 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
@@ -410,13 +415,14 @@ def train_model(
|
|
410 |
mode='max',
|
411 |
verbose=False,
|
412 |
),
|
413 |
-
# pl.callbacks.ModelCheckpoint(
|
414 |
-
# monitor='val_acc',
|
415 |
-
# mode='max',
|
416 |
-
# verbose=True,
|
417 |
-
# filename='{epoch}-{val_metrics_opt_score:.4f}',
|
418 |
-
# ),
|
419 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
# Define Trainer
|
421 |
trainer = pl.Trainer(
|
422 |
logger=logger if use_logger else False,
|
@@ -424,7 +430,7 @@ def train_model(
|
|
424 |
max_epochs=max_epochs,
|
425 |
fast_dev_run=fast_dev_run,
|
426 |
enable_model_summary=False,
|
427 |
-
enable_checkpointing=
|
428 |
enable_progress_bar=False,
|
429 |
devices=1,
|
430 |
num_nodes=1,
|
@@ -432,9 +438,9 @@ def train_model(
|
|
432 |
model = PROTAC_Model(
|
433 |
hidden_dim=hidden_dim,
|
434 |
smiles_emb_dim=smiles_emb_dim,
|
435 |
-
poi_emb_dim=
|
436 |
-
e3_emb_dim=
|
437 |
-
cell_emb_dim=
|
438 |
batch_size=batch_size,
|
439 |
join_embeddings=join_embeddings,
|
440 |
dropout=dropout,
|
|
|
2 |
from typing import Literal, List, Tuple, Optional, Dict
|
3 |
|
4 |
from .protac_dataset import PROTAC_Dataset
|
5 |
+
from .config import config
|
6 |
|
7 |
import pandas as pd
|
8 |
import numpy as np
|
|
|
28 |
def __init__(
|
29 |
self,
|
30 |
hidden_dim: int,
|
31 |
+
smiles_emb_dim: int = config.fingerprint_size,
|
32 |
+
poi_emb_dim: int = config.protein_embedding_size,
|
33 |
+
e3_emb_dim: int = config.protein_embedding_size,
|
34 |
+
cell_emb_dim: int = config.cell_embedding_size,
|
35 |
dropout: float = 0.2,
|
36 |
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
|
37 |
disabled_embeddings: list = [],
|
|
|
131 |
def __init__(
|
132 |
self,
|
133 |
hidden_dim: int,
|
134 |
+
smiles_emb_dim: int = config.fingerprint_size,
|
135 |
+
poi_emb_dim: int = config.protein_embedding_size,
|
136 |
+
e3_emb_dim: int = config.protein_embedding_size,
|
137 |
+
cell_emb_dim: int = config.cell_embedding_size,
|
138 |
batch_size: int = 32,
|
139 |
learning_rate: float = 1e-3,
|
140 |
dropout: float = 0.2,
|
|
|
330 |
learning_rate: float = 2e-5,
|
331 |
dropout: float = 0.2,
|
332 |
max_epochs: int = 50,
|
333 |
+
smiles_emb_dim: int = config.fingerprint_size,
|
334 |
+
poi_emb_dim: int = config.protein_embedding_size,
|
335 |
+
e3_emb_dim: int = config.protein_embedding_size,
|
336 |
+
cell_emb_dim: int = config.cell_embedding_size,
|
337 |
join_embeddings: Literal['beginning', 'concat', 'sum'] = 'concat',
|
338 |
smote_k_neighbors:int = 5,
|
339 |
use_smote: bool = True,
|
|
|
342 |
fast_dev_run: bool = False,
|
343 |
use_logger: bool = True,
|
344 |
logger_name: str = 'protac',
|
345 |
+
enable_checkpointing: bool = False,
|
346 |
+
checkpoint_model_name: str = 'protac',
|
347 |
disabled_embeddings: List[str] = [],
|
348 |
) -> tuple:
|
349 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
|
|
415 |
mode='max',
|
416 |
verbose=False,
|
417 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
]
|
419 |
+
if enable_checkpointing:
|
420 |
+
callbacks.append(pl.callbacks.ModelCheckpoint(
|
421 |
+
monitor='val_acc',
|
422 |
+
mode='max',
|
423 |
+
verbose=False,
|
424 |
+
filename=checkpoint_model_name + '-{epoch}-{val_metrics_opt_score:.4f}',
|
425 |
+
))
|
426 |
# Define Trainer
|
427 |
trainer = pl.Trainer(
|
428 |
logger=logger if use_logger else False,
|
|
|
430 |
max_epochs=max_epochs,
|
431 |
fast_dev_run=fast_dev_run,
|
432 |
enable_model_summary=False,
|
433 |
+
enable_checkpointing=enable_checkpointing,
|
434 |
enable_progress_bar=False,
|
435 |
devices=1,
|
436 |
num_nodes=1,
|
|
|
438 |
model = PROTAC_Model(
|
439 |
hidden_dim=hidden_dim,
|
440 |
smiles_emb_dim=smiles_emb_dim,
|
441 |
+
poi_emb_dim=poi_emb_dim,
|
442 |
+
e3_emb_dim=e3_emb_dim,
|
443 |
+
cell_emb_dim=cell_emb_dim,
|
444 |
batch_size=batch_size,
|
445 |
join_embeddings=join_embeddings,
|
446 |
dropout=dropout,
|
src/run_experiments.py
CHANGED
@@ -27,6 +27,16 @@ warnings.filterwarnings("ignore", ".*FixedLocator*")
|
|
27 |
warnings.filterwarnings("ignore", ".*does not have many workers.*")
|
28 |
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
|
31 |
""" Get the indices of the test set using a random split.
|
32 |
|
@@ -263,120 +273,148 @@ def main(
|
|
263 |
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
|
264 |
group = train_val_df['Uniprot Group'].to_numpy()
|
265 |
|
266 |
-
# Start the
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
'train_perc': len(train_df) / len(train_val_df),
|
285 |
-
'val_perc': len(val_df) / len(train_val_df),
|
286 |
-
'train_active_perc': train_df[active_col].sum() / len(train_df),
|
287 |
-
'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
|
288 |
-
'val_active_perc': val_df[active_col].sum() / len(val_df),
|
289 |
-
'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
|
290 |
-
'test_active_perc': test_df[active_col].sum() / len(test_df),
|
291 |
-
'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
|
292 |
-
'num_leaking_uniprot': len(leaking_uniprot),
|
293 |
-
'num_leaking_smiles': len(leaking_smiles),
|
294 |
-
'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
|
295 |
-
'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
|
296 |
-
}
|
297 |
-
if split_type != 'random':
|
298 |
-
stats['train_unique_groups'] = len(np.unique(group[train_index]))
|
299 |
-
stats['val_unique_groups'] = len(np.unique(group[val_index]))
|
300 |
-
|
301 |
-
# At each fold, train and evaluate the Pytorch model
|
302 |
-
if split_type != 'tanimoto' or run_sklearn:
|
303 |
-
logging.info(f'Skipping Pytorch model training on fold {k} with split type {split_type} and test split {test_split}.')
|
304 |
-
continue
|
305 |
-
else:
|
306 |
-
logging.info(f'Starting Pytorch model training on fold {k} with split type {split_type} and test split {test_split}.')
|
307 |
-
# Train and evaluate the model
|
308 |
-
model, trainer, metrics = pdp.hyperparameter_tuning_and_training(
|
309 |
-
protein2embedding,
|
310 |
-
cell2embedding,
|
311 |
-
smiles2fp,
|
312 |
-
train_df,
|
313 |
-
val_df,
|
314 |
-
test_df,
|
315 |
-
fast_dev_run=fast_dev_run,
|
316 |
-
n_trials=n_trials,
|
317 |
-
logger_name=f'protac_{active_name}_{split_type}_fold_{k}_test_split_{test_split}',
|
318 |
-
active_label=active_col,
|
319 |
-
study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}.pkl',
|
320 |
-
)
|
321 |
-
hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
|
322 |
-
stats.update(metrics)
|
323 |
-
stats['model_type'] = 'Pytorch'
|
324 |
-
report.append(stats.copy())
|
325 |
-
del model
|
326 |
-
del trainer
|
327 |
-
|
328 |
-
# Ablation study: disable embeddings at a time
|
329 |
-
for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
|
330 |
-
print('-' * 100)
|
331 |
-
print(f'Ablation study with disabled embeddings: {disabled_embeddings}')
|
332 |
-
print('-' * 100)
|
333 |
-
stats['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
|
334 |
-
model, trainer, metrics = pdp.train_model(
|
335 |
-
protein2embedding,
|
336 |
-
cell2embedding,
|
337 |
-
smiles2fp,
|
338 |
-
train_df,
|
339 |
-
val_df,
|
340 |
-
test_df,
|
341 |
-
fast_dev_run=fast_dev_run,
|
342 |
-
logger_name=f'protac_{active_name}_{split_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
|
343 |
-
active_label=active_col,
|
344 |
-
disabled_embeddings=disabled_embeddings,
|
345 |
-
**hparams,
|
346 |
-
)
|
347 |
-
stats.update(metrics)
|
348 |
-
report.append(stats.copy())
|
349 |
-
del model
|
350 |
-
del trainer
|
351 |
-
|
352 |
-
# At each fold, train and evaluate sklearn models
|
353 |
-
if run_sklearn:
|
354 |
-
for model_type in ['RandomForest', 'SVC', 'LogisticRegression', 'GradientBoosting']:
|
355 |
-
logging.info(f'Starting sklearn model {model_type} training on fold {k} with split type {split_type} and test split {test_split}.')
|
356 |
-
# Train and evaluate sklearn models
|
357 |
-
model, metrics = pdp.hyperparameter_tuning_and_training_sklearn(
|
358 |
-
protein2embedding=protein2embedding,
|
359 |
-
cell2embedding=cell2embedding,
|
360 |
-
smiles2fp=smiles2fp,
|
361 |
-
train_df=train_df,
|
362 |
-
val_df=val_df,
|
363 |
-
test_df=test_df,
|
364 |
-
model_type=model_type,
|
365 |
-
active_label=active_col,
|
366 |
-
n_trials=n_trials,
|
367 |
-
study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}_{model_type.lower()}.pkl',
|
368 |
-
)
|
369 |
-
hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
|
370 |
-
stats['model_type'] = model_type
|
371 |
-
stats.update(metrics)
|
372 |
-
report.append(stats.copy())
|
373 |
-
|
374 |
-
# Save the report at the end of each split type
|
375 |
-
report_df = pd.DataFrame(report)
|
376 |
-
report_df.to_csv(
|
377 |
-
f'../reports/cv_report_hparam_search_{cv_n_splits}-splits_{active_name}_test_split_{test_split}{"_sklearn" if run_sklearn else ""}.csv',
|
378 |
-
index=False,
|
379 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
380 |
|
381 |
|
382 |
if __name__ == '__main__':
|
|
|
27 |
warnings.filterwarnings("ignore", ".*does not have many workers.*")
|
28 |
|
29 |
|
30 |
+
root = logging.getLogger()
|
31 |
+
root.setLevel(logging.DEBUG)
|
32 |
+
|
33 |
+
handler = logging.StreamHandler(sys.stdout)
|
34 |
+
handler.setLevel(logging.DEBUG)
|
35 |
+
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
|
36 |
+
handler.setFormatter(formatter)
|
37 |
+
root.addHandler(handler)
|
38 |
+
|
39 |
+
|
40 |
def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
|
41 |
""" Get the indices of the test set using a random split.
|
42 |
|
|
|
273 |
kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
|
274 |
group = train_val_df['Uniprot Group'].to_numpy()
|
275 |
|
276 |
+
# Start the experiment
|
277 |
+
experiment_name = f'{active_name}_test_split_{test_split}_{split_type}'
|
278 |
+
reports = pdp.hyperparameter_tuning_and_training(
|
279 |
+
protein2embedding=protein2embedding,
|
280 |
+
cell2embedding=cell2embedding,
|
281 |
+
smiles2fp=smiles2fp,
|
282 |
+
train_val_df=train_val_df,
|
283 |
+
test_df=test_df,
|
284 |
+
kf=kf,
|
285 |
+
groups=group,
|
286 |
+
split_type=split_type,
|
287 |
+
n_models_for_test=3,
|
288 |
+
fast_dev_run=fast_dev_run,
|
289 |
+
n_trials=n_trials,
|
290 |
+
max_epochs=10,
|
291 |
+
logger_name=f'logs_{experiment_name}',
|
292 |
+
active_label=active_col,
|
293 |
+
study_filename=f'../reports/study_{experiment_name}.pkl',
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
)
|
295 |
+
cv_report, hparam_report, test_report, ablation_report = reports
|
296 |
+
|
297 |
+
# Save the reports to file
|
298 |
+
for report, filename in zip([cv_report, hparam_report, test_report, ablation_report], ['cv_train', 'hparams', 'test', 'ablation']):
|
299 |
+
report.to_csv(f'../reports/report_{filename}_{experiment_name}.csv', index=False)
|
300 |
+
|
301 |
+
|
302 |
+
|
303 |
+
|
304 |
+
# # Start the CV over the folds
|
305 |
+
# X = train_val_df.drop(columns=active_col)
|
306 |
+
# y = train_val_df[active_col].tolist()
|
307 |
+
# for k, (train_index, val_index) in enumerate(kf.split(X, y, group)):
|
308 |
+
# print('-' * 100)
|
309 |
+
# print(f'Starting CV for group type: {split_type}, fold: {k}')
|
310 |
+
# print('-' * 100)
|
311 |
+
# train_df = train_val_df.iloc[train_index]
|
312 |
+
# val_df = train_val_df.iloc[val_index]
|
313 |
+
|
314 |
+
# leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
|
315 |
+
# leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
|
316 |
+
|
317 |
+
# stats = {
|
318 |
+
# 'fold': k,
|
319 |
+
# 'split_type': split_type,
|
320 |
+
# 'train_len': len(train_df),
|
321 |
+
# 'val_len': len(val_df),
|
322 |
+
# 'train_perc': len(train_df) / len(train_val_df),
|
323 |
+
# 'val_perc': len(val_df) / len(train_val_df),
|
324 |
+
# 'train_active_perc': train_df[active_col].sum() / len(train_df),
|
325 |
+
# 'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
|
326 |
+
# 'val_active_perc': val_df[active_col].sum() / len(val_df),
|
327 |
+
# 'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
|
328 |
+
# 'test_active_perc': test_df[active_col].sum() / len(test_df),
|
329 |
+
# 'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
|
330 |
+
# 'num_leaking_uniprot': len(leaking_uniprot),
|
331 |
+
# 'num_leaking_smiles': len(leaking_smiles),
|
332 |
+
# 'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
|
333 |
+
# 'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
|
334 |
+
# }
|
335 |
+
# if split_type != 'random':
|
336 |
+
# stats['train_unique_groups'] = len(np.unique(group[train_index]))
|
337 |
+
# stats['val_unique_groups'] = len(np.unique(group[val_index]))
|
338 |
+
|
339 |
+
# # At each fold, train and evaluate the Pytorch model
|
340 |
+
# if split_type != 'tanimoto' or run_sklearn:
|
341 |
+
# logging.info(f'Skipping Pytorch model training on fold {k} with split type {split_type} and test split {test_split}.')
|
342 |
+
# continue
|
343 |
+
# else:
|
344 |
+
# logging.info(f'Starting Pytorch model training on fold {k} with split type {split_type} and test split {test_split}.')
|
345 |
+
# # Train and evaluate the model
|
346 |
+
# model, trainer, metrics = pdp.hyperparameter_tuning_and_training(
|
347 |
+
# protein2embedding,
|
348 |
+
# cell2embedding,
|
349 |
+
# smiles2fp,
|
350 |
+
# train_df,
|
351 |
+
# val_df,
|
352 |
+
# test_df,
|
353 |
+
# fast_dev_run=fast_dev_run,
|
354 |
+
# n_trials=n_trials,
|
355 |
+
# logger_name=f'protac_{active_name}_{split_type}_fold_{k}_test_split_{test_split}',
|
356 |
+
# active_label=active_col,
|
357 |
+
# study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}.pkl',
|
358 |
+
# )
|
359 |
+
# hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
|
360 |
+
# stats.update(metrics)
|
361 |
+
# stats['model_type'] = 'Pytorch'
|
362 |
+
# report.append(stats.copy())
|
363 |
+
# del model
|
364 |
+
# del trainer
|
365 |
+
|
366 |
+
# # Ablation study: disable embeddings at a time
|
367 |
+
# for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
|
368 |
+
# print('-' * 100)
|
369 |
+
# print(f'Ablation study with disabled embeddings: {disabled_embeddings}')
|
370 |
+
# print('-' * 100)
|
371 |
+
# stats['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
|
372 |
+
# model, trainer, metrics = pdp.train_model(
|
373 |
+
# protein2embedding,
|
374 |
+
# cell2embedding,
|
375 |
+
# smiles2fp,
|
376 |
+
# train_df,
|
377 |
+
# val_df,
|
378 |
+
# test_df,
|
379 |
+
# fast_dev_run=fast_dev_run,
|
380 |
+
# logger_name=f'protac_{active_name}_{split_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
|
381 |
+
# active_label=active_col,
|
382 |
+
# disabled_embeddings=disabled_embeddings,
|
383 |
+
# **hparams,
|
384 |
+
# )
|
385 |
+
# stats.update(metrics)
|
386 |
+
# report.append(stats.copy())
|
387 |
+
# del model
|
388 |
+
# del trainer
|
389 |
+
|
390 |
+
# # At each fold, train and evaluate sklearn models
|
391 |
+
# if run_sklearn:
|
392 |
+
# for model_type in ['RandomForest', 'SVC', 'LogisticRegression', 'GradientBoosting']:
|
393 |
+
# logging.info(f'Starting sklearn model {model_type} training on fold {k} with split type {split_type} and test split {test_split}.')
|
394 |
+
# # Train and evaluate sklearn models
|
395 |
+
# model, metrics = pdp.hyperparameter_tuning_and_training_sklearn(
|
396 |
+
# protein2embedding=protein2embedding,
|
397 |
+
# cell2embedding=cell2embedding,
|
398 |
+
# smiles2fp=smiles2fp,
|
399 |
+
# train_df=train_df,
|
400 |
+
# val_df=val_df,
|
401 |
+
# test_df=test_df,
|
402 |
+
# model_type=model_type,
|
403 |
+
# active_label=active_col,
|
404 |
+
# n_trials=n_trials,
|
405 |
+
# study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}_{model_type.lower()}.pkl',
|
406 |
+
# )
|
407 |
+
# hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
|
408 |
+
# stats['model_type'] = model_type
|
409 |
+
# stats.update(metrics)
|
410 |
+
# report.append(stats.copy())
|
411 |
+
|
412 |
+
# # Save the report at the end of each split type
|
413 |
+
# report_df = pd.DataFrame(report)
|
414 |
+
# report_df.to_csv(
|
415 |
+
# f'../reports/cv_report_hparam_search_{cv_n_splits}-splits_{active_name}_test_split_{test_split}{"_sklearn" if run_sklearn else ""}.csv',
|
416 |
+
# index=False,
|
417 |
+
# )
|
418 |
|
419 |
|
420 |
if __name__ == '__main__':
|