Commit
·
b86d3ec
1
Parent(s):
74a86c6
Added majority voting evaluation
Browse files
protac_degradation_predictor/optuna_utils.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
from typing import Literal, List, Tuple, Optional, Dict
|
3 |
import logging
|
4 |
|
5 |
-
from .pytorch_models import train_model
|
6 |
from .sklearn_models import (
|
7 |
train_sklearn_model,
|
8 |
suggest_random_forest,
|
@@ -11,6 +11,7 @@ from .sklearn_models import (
|
|
11 |
suggest_gradient_boosting,
|
12 |
)
|
13 |
|
|
|
14 |
import optuna
|
15 |
from optuna.samplers import TPESampler
|
16 |
import joblib
|
@@ -27,6 +28,56 @@ from sklearn.model_selection import (
|
|
27 |
)
|
28 |
import numpy as np
|
29 |
import pytorch_lightning as pl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
def pytorch_model_objective(
|
@@ -77,15 +128,15 @@ def pytorch_model_objective(
|
|
77 |
X = train_val_df.copy().drop(columns=active_label)
|
78 |
y = train_val_df[active_label].tolist()
|
79 |
report = []
|
|
|
|
|
80 |
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
|
81 |
logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
|
82 |
# Get the train and val sets
|
83 |
train_df = train_val_df.iloc[train_index]
|
84 |
val_df = train_val_df.iloc[val_index]
|
85 |
|
86 |
-
#
|
87 |
-
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
|
88 |
-
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
|
89 |
stats = {
|
90 |
'model_type': 'Pytorch',
|
91 |
'fold': k,
|
@@ -93,22 +144,15 @@ def pytorch_model_objective(
|
|
93 |
'val_len': len(val_df),
|
94 |
'train_perc': len(train_df) / len(train_val_df),
|
95 |
'val_perc': len(val_df) / len(train_val_df),
|
96 |
-
'train_active_perc': train_df[active_label].sum() / len(train_df),
|
97 |
-
'train_inactive_perc': (len(train_df) - train_df[active_label].sum()) / len(train_df),
|
98 |
-
'val_active_perc': val_df[active_label].sum() / len(val_df),
|
99 |
-
'val_inactive_perc': (len(val_df) - val_df[active_label].sum()) / len(val_df),
|
100 |
-
'num_leaking_uniprot': len(leaking_uniprot),
|
101 |
-
'num_leaking_smiles': len(leaking_smiles),
|
102 |
-
'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
|
103 |
-
'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
|
104 |
}
|
|
|
105 |
if groups is not None:
|
106 |
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
|
107 |
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
|
108 |
|
109 |
# At each fold, train and evaluate the Pytorch model
|
110 |
# Train the model with the current set of hyperparameters
|
111 |
-
|
112 |
protein2embedding=protein2embedding,
|
113 |
cell2embedding=cell2embedding,
|
114 |
smiles2fp=smiles2fp,
|
@@ -127,22 +171,47 @@ def pytorch_model_objective(
|
|
127 |
use_logger=False,
|
128 |
fast_dev_run=fast_dev_run,
|
129 |
active_label=active_label,
|
|
|
130 |
disabled_embeddings=disabled_embeddings,
|
131 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
train_metrics = {m: v.item() for m, v in trainer.callback_metrics.items() if 'train' in m}
|
133 |
stats.update(metrics)
|
134 |
stats.update(train_metrics)
|
135 |
report.append(stats.copy())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
# Get the average validation accuracy and ROC AUC accross the folds
|
138 |
-
val_acc = np.mean([r['val_acc'] for r in report])
|
139 |
val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
|
140 |
|
141 |
-
# Save the report in the trial
|
142 |
-
trial.set_user_attr('report', report)
|
143 |
-
|
144 |
# Optuna aims to minimize the pytorch_model_objective
|
145 |
-
return -
|
146 |
|
147 |
|
148 |
def hyperparameter_tuning_and_training(
|
@@ -162,6 +231,7 @@ def hyperparameter_tuning_and_training(
|
|
162 |
active_label: str = 'Active',
|
163 |
max_epochs: int = 100,
|
164 |
study_filename: Optional[str] = None,
|
|
|
165 |
) -> tuple:
|
166 |
""" Hyperparameter tuning and training of a PROTAC model.
|
167 |
|
@@ -181,10 +251,11 @@ def hyperparameter_tuning_and_training(
|
|
181 |
pl.seed_everything(42)
|
182 |
|
183 |
# Define the search space
|
184 |
-
hidden_dim_options = [256, 512, 768]
|
185 |
-
batch_size_options = [8, 16, 32]
|
186 |
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
|
187 |
smote_k_neighbors_options = list(range(3, 16))
|
|
|
188 |
|
189 |
# Set the verbosity of Optuna
|
190 |
optuna.logging.set_verbosity(optuna.logging.WARNING)
|
@@ -193,13 +264,13 @@ def hyperparameter_tuning_and_training(
|
|
193 |
study = optuna.create_study(direction='minimize', sampler=sampler)
|
194 |
|
195 |
study_loaded = False
|
196 |
-
if study_filename:
|
197 |
if os.path.exists(study_filename):
|
198 |
study = joblib.load(study_filename)
|
199 |
study_loaded = True
|
200 |
logging.info(f'Loaded study from {study_filename}')
|
201 |
|
202 |
-
if not study_loaded:
|
203 |
study.optimize(
|
204 |
lambda trial: pytorch_model_objective(
|
205 |
trial=trial,
|
@@ -214,6 +285,7 @@ def hyperparameter_tuning_and_training(
|
|
214 |
batch_size_options=batch_size_options,
|
215 |
learning_rate_options=learning_rate_options,
|
216 |
smote_k_neighbors_options=smote_k_neighbors_options,
|
|
|
217 |
fast_dev_run=fast_dev_run,
|
218 |
active_label=active_label,
|
219 |
max_epochs=max_epochs,
|
@@ -228,9 +300,11 @@ def hyperparameter_tuning_and_training(
|
|
228 |
|
229 |
# Retrain N models with the best hyperparameters (measure model uncertainty)
|
230 |
test_report = []
|
|
|
|
|
231 |
for i in range(n_models_for_test):
|
232 |
pl.seed_everything(42 + i + 1)
|
233 |
-
_, trainer, metrics = train_model(
|
234 |
protein2embedding=protein2embedding,
|
235 |
cell2embedding=cell2embedding,
|
236 |
smiles2fp=smiles2fp,
|
@@ -245,29 +319,52 @@ def hyperparameter_tuning_and_training(
|
|
245 |
logger_name=f'{logger_name}_best_model_n{i}',
|
246 |
enable_checkpointing=True,
|
247 |
checkpoint_model_name=f'best_model_n{i}_{split_type}',
|
|
|
248 |
**study.best_params,
|
249 |
)
|
250 |
# Rename the keys in the metrics dictionary
|
251 |
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
|
252 |
metrics['model_type'] = 'Pytorch'
|
253 |
metrics['test_model_id'] = i
|
254 |
-
metrics
|
255 |
-
metrics['test_active_perc'] = test_df[active_label].sum() / len(test_df)
|
256 |
-
metrics['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
|
257 |
|
258 |
# Add the training metrics
|
259 |
-
train_metrics = {m
|
260 |
logging.info(f'Training metrics: {train_metrics}')
|
261 |
logging.info(f'Training trainer.logged_metrics: {trainer.logged_metrics}')
|
262 |
logging.info(f'Training trainer.callback_metrics: {trainer.callback_metrics}')
|
263 |
|
264 |
metrics.update(train_metrics)
|
265 |
-
|
266 |
test_report.append(metrics.copy())
|
|
|
267 |
test_report = pd.DataFrame(test_report)
|
268 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
# Ablation study: disable embeddings at a time
|
270 |
ablation_report = []
|
|
|
271 |
for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
|
272 |
logging.info('-' * 100)
|
273 |
logging.info(f'Ablation study with disabled embeddings: {disabled_embeddings}')
|
@@ -291,9 +388,10 @@ def hyperparameter_tuning_and_training(
|
|
291 |
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
|
292 |
metrics['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
|
293 |
metrics['model_type'] = 'Pytorch'
|
|
|
294 |
|
295 |
# Add the training metrics
|
296 |
-
train_metrics = {m
|
297 |
metrics.update(train_metrics)
|
298 |
|
299 |
ablation_report.append(metrics.copy())
|
@@ -304,7 +402,14 @@ def hyperparameter_tuning_and_training(
|
|
304 |
report['split_type'] = split_type
|
305 |
|
306 |
# Return the reports
|
307 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
308 |
|
309 |
|
310 |
def sklearn_model_objective(
|
|
|
2 |
from typing import Literal, List, Tuple, Optional, Dict
|
3 |
import logging
|
4 |
|
5 |
+
from .pytorch_models import train_model, PROTAC_Model
|
6 |
from .sklearn_models import (
|
7 |
train_sklearn_model,
|
8 |
suggest_random_forest,
|
|
|
11 |
suggest_gradient_boosting,
|
12 |
)
|
13 |
|
14 |
+
import torch
|
15 |
import optuna
|
16 |
from optuna.samplers import TPESampler
|
17 |
import joblib
|
|
|
28 |
)
|
29 |
import numpy as np
|
30 |
import pytorch_lightning as pl
|
31 |
+
from torchmetrics import (
|
32 |
+
Accuracy,
|
33 |
+
AUROC,
|
34 |
+
Precision,
|
35 |
+
Recall,
|
36 |
+
F1Score,
|
37 |
+
)
|
38 |
+
|
39 |
+
|
40 |
+
def get_dataframe_stats(
|
41 |
+
train_df = None,
|
42 |
+
val_df = None,
|
43 |
+
test_df = None,
|
44 |
+
active_label = 'Active',
|
45 |
+
) -> Dict:
|
46 |
+
""" Get some statistics from the dataframes.
|
47 |
+
|
48 |
+
Args:
|
49 |
+
train_df (pd.DataFrame): The training set.
|
50 |
+
val_df (pd.DataFrame): The validation set.
|
51 |
+
test_df (pd.DataFrame): The test set.
|
52 |
+
"""
|
53 |
+
stats = {}
|
54 |
+
if train_df is not None:
|
55 |
+
stats['train_len'] = len(train_df)
|
56 |
+
stats['train_active_perc'] = train_df[active_label].sum() / len(train_df)
|
57 |
+
stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df)
|
58 |
+
if val_df is not None:
|
59 |
+
stats['val_len'] = len(val_df)
|
60 |
+
stats['val_active_perc'] = val_df[active_label].sum() / len(val_df)
|
61 |
+
stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df)
|
62 |
+
if test_df is not None:
|
63 |
+
stats['test_len'] = len(test_df)
|
64 |
+
stats['test_active_perc'] = test_df[active_label].sum() / len(test_df)
|
65 |
+
stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
|
66 |
+
if train_df is not None and val_df is not None:
|
67 |
+
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
|
68 |
+
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
|
69 |
+
stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot)
|
70 |
+
stats['num_leaking_smiles_train_val'] = len(leaking_smiles)
|
71 |
+
stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
|
72 |
+
stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
|
73 |
+
if train_df is not None and test_df is not None:
|
74 |
+
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot'])))
|
75 |
+
leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles'])))
|
76 |
+
stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot)
|
77 |
+
stats['num_leaking_smiles_train_test'] = len(leaking_smiles)
|
78 |
+
stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
|
79 |
+
stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
|
80 |
+
return stats
|
81 |
|
82 |
|
83 |
def pytorch_model_objective(
|
|
|
128 |
X = train_val_df.copy().drop(columns=active_label)
|
129 |
y = train_val_df[active_label].tolist()
|
130 |
report = []
|
131 |
+
val_preds = []
|
132 |
+
test_preds = []
|
133 |
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
|
134 |
logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
|
135 |
# Get the train and val sets
|
136 |
train_df = train_val_df.iloc[train_index]
|
137 |
val_df = train_val_df.iloc[val_index]
|
138 |
|
139 |
+
# Get some statistics from the dataframes
|
|
|
|
|
140 |
stats = {
|
141 |
'model_type': 'Pytorch',
|
142 |
'fold': k,
|
|
|
144 |
'val_len': len(val_df),
|
145 |
'train_perc': len(train_df) / len(train_val_df),
|
146 |
'val_perc': len(val_df) / len(train_val_df),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
}
|
148 |
+
stats.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
|
149 |
if groups is not None:
|
150 |
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
|
151 |
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
|
152 |
|
153 |
# At each fold, train and evaluate the Pytorch model
|
154 |
# Train the model with the current set of hyperparameters
|
155 |
+
ret = train_model(
|
156 |
protein2embedding=protein2embedding,
|
157 |
cell2embedding=cell2embedding,
|
158 |
smiles2fp=smiles2fp,
|
|
|
171 |
use_logger=False,
|
172 |
fast_dev_run=fast_dev_run,
|
173 |
active_label=active_label,
|
174 |
+
return_predictions=True,
|
175 |
disabled_embeddings=disabled_embeddings,
|
176 |
)
|
177 |
+
if test_df is not None:
|
178 |
+
_, trainer, metrics, val_pred, test_pred = ret
|
179 |
+
test_preds.append(test_pred)
|
180 |
+
logging.info(f'Test predictions: {test_pred}')
|
181 |
+
else:
|
182 |
+
_, trainer, metrics, val_pred = ret
|
183 |
train_metrics = {m: v.item() for m, v in trainer.callback_metrics.items() if 'train' in m}
|
184 |
stats.update(metrics)
|
185 |
stats.update(train_metrics)
|
186 |
report.append(stats.copy())
|
187 |
+
val_preds.append(val_pred)
|
188 |
+
|
189 |
+
# Save the report in the trial
|
190 |
+
trial.set_user_attr('report', report)
|
191 |
+
|
192 |
+
# Get the majority vote for the test predictions
|
193 |
+
if test_df is not None:
|
194 |
+
# Get the majority vote for the test predictions
|
195 |
+
test_preds = torch.stack(test_preds)
|
196 |
+
test_preds, _ = torch.mode(test_preds, dim=0)
|
197 |
+
y = torch.tensor(test_df[active_label].tolist())
|
198 |
+
# Measure the test accuracy and ROC AUC
|
199 |
+
majority_vote_metrics = {
|
200 |
+
'test_acc': Accuracy(task='binary')(test_preds, y).item(),
|
201 |
+
'test_roc_auc': AUROC(task='binary')(test_preds, y).item(),
|
202 |
+
'test_precision': Precision(task='binary')(test_preds, y).item(),
|
203 |
+
'test_recall': Recall(task='binary')(test_preds, y).item(),
|
204 |
+
'test_f1': F1Score(task='binary')(test_preds, y).item(),
|
205 |
+
}
|
206 |
+
majority_vote_metrics.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
|
207 |
+
trial.set_user_attr('majority_vote_metrics', majority_vote_metrics)
|
208 |
+
logging.info(f'Majority vote metrics: {majority_vote_metrics}')
|
209 |
|
210 |
# Get the average validation accuracy and ROC AUC accross the folds
|
|
|
211 |
val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
|
212 |
|
|
|
|
|
|
|
213 |
# Optuna aims to minimize the pytorch_model_objective
|
214 |
+
return - val_roc_auc
|
215 |
|
216 |
|
217 |
def hyperparameter_tuning_and_training(
|
|
|
231 |
active_label: str = 'Active',
|
232 |
max_epochs: int = 100,
|
233 |
study_filename: Optional[str] = None,
|
234 |
+
force_study: bool = False,
|
235 |
) -> tuple:
|
236 |
""" Hyperparameter tuning and training of a PROTAC model.
|
237 |
|
|
|
251 |
pl.seed_everything(42)
|
252 |
|
253 |
# Define the search space
|
254 |
+
hidden_dim_options = [32, 64, 128, 256, 512, 768]
|
255 |
+
batch_size_options = [4, 8, 16, 32, 64, 128]
|
256 |
learning_rate_options = (1e-5, 1e-3) # min and max values for loguniform distribution
|
257 |
smote_k_neighbors_options = list(range(3, 16))
|
258 |
+
dropout_options = (0.1, 0.9)
|
259 |
|
260 |
# Set the verbosity of Optuna
|
261 |
optuna.logging.set_verbosity(optuna.logging.WARNING)
|
|
|
264 |
study = optuna.create_study(direction='minimize', sampler=sampler)
|
265 |
|
266 |
study_loaded = False
|
267 |
+
if study_filename and not force_study:
|
268 |
if os.path.exists(study_filename):
|
269 |
study = joblib.load(study_filename)
|
270 |
study_loaded = True
|
271 |
logging.info(f'Loaded study from {study_filename}')
|
272 |
|
273 |
+
if not study_loaded or force_study:
|
274 |
study.optimize(
|
275 |
lambda trial: pytorch_model_objective(
|
276 |
trial=trial,
|
|
|
285 |
batch_size_options=batch_size_options,
|
286 |
learning_rate_options=learning_rate_options,
|
287 |
smote_k_neighbors_options=smote_k_neighbors_options,
|
288 |
+
dropout_options=dropout_options,
|
289 |
fast_dev_run=fast_dev_run,
|
290 |
active_label=active_label,
|
291 |
max_epochs=max_epochs,
|
|
|
300 |
|
301 |
# Retrain N models with the best hyperparameters (measure model uncertainty)
|
302 |
test_report = []
|
303 |
+
test_preds = []
|
304 |
+
dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
|
305 |
for i in range(n_models_for_test):
|
306 |
pl.seed_everything(42 + i + 1)
|
307 |
+
_, trainer, metrics, test_pred = train_model(
|
308 |
protein2embedding=protein2embedding,
|
309 |
cell2embedding=cell2embedding,
|
310 |
smiles2fp=smiles2fp,
|
|
|
319 |
logger_name=f'{logger_name}_best_model_n{i}',
|
320 |
enable_checkpointing=True,
|
321 |
checkpoint_model_name=f'best_model_n{i}_{split_type}',
|
322 |
+
return_predictions=True,
|
323 |
**study.best_params,
|
324 |
)
|
325 |
# Rename the keys in the metrics dictionary
|
326 |
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
|
327 |
metrics['model_type'] = 'Pytorch'
|
328 |
metrics['test_model_id'] = i
|
329 |
+
metrics.update(dfs_stats)
|
|
|
|
|
330 |
|
331 |
# Add the training metrics
|
332 |
+
train_metrics = {m: v.item() for m, v in trainer.callback_metrics.items() if 'train' in m}
|
333 |
logging.info(f'Training metrics: {train_metrics}')
|
334 |
logging.info(f'Training trainer.logged_metrics: {trainer.logged_metrics}')
|
335 |
logging.info(f'Training trainer.callback_metrics: {trainer.callback_metrics}')
|
336 |
|
337 |
metrics.update(train_metrics)
|
|
|
338 |
test_report.append(metrics.copy())
|
339 |
+
test_preds.append(test_pred)
|
340 |
test_report = pd.DataFrame(test_report)
|
341 |
|
342 |
+
# Get the majority vote for the test predictions
|
343 |
+
test_preds = torch.stack(test_preds)
|
344 |
+
test_preds, _ = torch.mode(test_preds, dim=0)
|
345 |
+
y = torch.tensor(test_df[active_label].tolist())
|
346 |
+
# Measure the test accuracy and ROC AUC
|
347 |
+
majority_vote_metrics = {
|
348 |
+
'cv_models': False,
|
349 |
+
'test_acc': Accuracy(task='binary')(test_preds, y).item(),
|
350 |
+
'test_roc_auc': AUROC(task='binary')(test_preds, y).item(),
|
351 |
+
'test_precision': Precision(task='binary')(test_preds, y).item(),
|
352 |
+
'test_recall': Recall(task='binary')(test_preds, y).item(),
|
353 |
+
'test_f1': F1Score(task='binary')(test_preds, y).item(),
|
354 |
+
}
|
355 |
+
majority_vote_metrics.update(get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label))
|
356 |
+
majority_vote_metrics_cv = study.best_trial.user_attrs['majority_vote_metrics']
|
357 |
+
majority_vote_metrics_cv['cv_models'] = True
|
358 |
+
majority_vote_report = pd.DataFrame([
|
359 |
+
majority_vote_metrics,
|
360 |
+
majority_vote_metrics_cv,
|
361 |
+
])
|
362 |
+
majority_vote_report['model_type'] = 'Pytorch'
|
363 |
+
majority_vote_report['split_type'] = split_type
|
364 |
+
|
365 |
# Ablation study: disable embeddings at a time
|
366 |
ablation_report = []
|
367 |
+
dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
|
368 |
for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
|
369 |
logging.info('-' * 100)
|
370 |
logging.info(f'Ablation study with disabled embeddings: {disabled_embeddings}')
|
|
|
388 |
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
|
389 |
metrics['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
|
390 |
metrics['model_type'] = 'Pytorch'
|
391 |
+
metrics.update(dfs_stats)
|
392 |
|
393 |
# Add the training metrics
|
394 |
+
train_metrics = {m: v.item() for m, v in trainer.callback_metrics.items() if 'train' in m}
|
395 |
metrics.update(train_metrics)
|
396 |
|
397 |
ablation_report.append(metrics.copy())
|
|
|
402 |
report['split_type'] = split_type
|
403 |
|
404 |
# Return the reports
|
405 |
+
ret = {
|
406 |
+
'cv_report': cv_report,
|
407 |
+
'hparam_report': hparam_report,
|
408 |
+
'test_report': test_report,
|
409 |
+
'ablation_report': ablation_report,
|
410 |
+
'majority_vote_report': majority_vote_report,
|
411 |
+
}
|
412 |
+
return ret
|
413 |
|
414 |
|
415 |
def sklearn_model_objective(
|
protac_degradation_predictor/pytorch_models.py
CHANGED
@@ -315,26 +315,6 @@ class PROTAC_Model(pl.LightningModule):
|
|
315 |
e3_emb = batch['e3_emb']
|
316 |
cell_emb = batch['cell_emb']
|
317 |
smiles_emb = batch['smiles_emb']
|
318 |
-
|
319 |
-
if self.apply_scaling:
|
320 |
-
if self.join_embeddings == 'beginning':
|
321 |
-
embeddings = np.hstack([
|
322 |
-
np.array(smiles_emb.tolist()),
|
323 |
-
np.array(poi_emb.tolist()),
|
324 |
-
np.array(e3_emb.tolist()),
|
325 |
-
np.array(cell_emb.tolist()),
|
326 |
-
])
|
327 |
-
embeddings = self.scalers.transform(embeddings)
|
328 |
-
smiles_emb = embeddings[:, :self.smiles_emb_dim]
|
329 |
-
poi_emb = embeddings[:, self.smiles_emb_dim:self.smiles_emb_dim+self.poi_emb_dim]
|
330 |
-
e3_emb = embeddings[:, self.smiles_emb_dim+self.poi_emb_dim:self.smiles_emb_dim+2*self.poi_emb_dim]
|
331 |
-
cell_emb = embeddings[:, -self.cell_emb_dim:]
|
332 |
-
else:
|
333 |
-
poi_emb = self.scalers['Uniprot'].transform(poi_emb)
|
334 |
-
e3_emb = self.scalers['E3 Ligase Uniprot'].transform(e3_emb)
|
335 |
-
cell_emb = self.scalers['Cell Line Identifier'].transform(cell_emb)
|
336 |
-
smiles_emb = self.scalers['Smiles'].transform(smiles_emb)
|
337 |
-
|
338 |
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
|
339 |
return torch.sigmoid(y_hat)
|
340 |
|
@@ -416,6 +396,7 @@ def train_model(
|
|
416 |
enable_checkpointing: bool = False,
|
417 |
checkpoint_model_name: str = 'protac',
|
418 |
disabled_embeddings: List[str] = [],
|
|
|
419 |
) -> tuple:
|
420 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
421 |
|
@@ -540,12 +521,19 @@ def train_model(
|
|
540 |
warnings.simplefilter("ignore")
|
541 |
trainer.fit(model)
|
542 |
metrics = trainer.validate(model, verbose=False)[0]
|
543 |
-
|
544 |
-
# Add train metrics to metrics
|
545 |
-
|
546 |
if test_df is not None:
|
547 |
test_metrics = trainer.test(model, verbose=False)[0]
|
548 |
metrics.update(test_metrics)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
549 |
return model, trainer, metrics
|
550 |
|
551 |
|
|
|
315 |
e3_emb = batch['e3_emb']
|
316 |
cell_emb = batch['cell_emb']
|
317 |
smiles_emb = batch['smiles_emb']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
y_hat = self.forward(poi_emb, e3_emb, cell_emb, smiles_emb)
|
319 |
return torch.sigmoid(y_hat)
|
320 |
|
|
|
396 |
enable_checkpointing: bool = False,
|
397 |
checkpoint_model_name: str = 'protac',
|
398 |
disabled_embeddings: List[str] = [],
|
399 |
+
return_predictions: bool = False,
|
400 |
) -> tuple:
|
401 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
402 |
|
|
|
521 |
warnings.simplefilter("ignore")
|
522 |
trainer.fit(model)
|
523 |
metrics = trainer.validate(model, verbose=False)[0]
|
524 |
+
# Add test metrics to metrics
|
|
|
|
|
525 |
if test_df is not None:
|
526 |
test_metrics = trainer.test(model, verbose=False)[0]
|
527 |
metrics.update(test_metrics)
|
528 |
+
if return_predictions:
|
529 |
+
val_dl = DataLoader(val_ds, batch_size=batch_size, shuffle=False)
|
530 |
+
val_pred = trainer.predict(model, val_dl)
|
531 |
+
val_pred = torch.concat(trainer.predict(model, val_dl)).squeeze()
|
532 |
+
if test_df is not None:
|
533 |
+
test_dl = DataLoader(test_ds, batch_size=batch_size, shuffle=False)
|
534 |
+
test_pred = torch.concat(trainer.predict(model, test_dl)).squeeze()
|
535 |
+
return model, trainer, metrics, val_pred, test_pred
|
536 |
+
return model, trainer, metrics, val_pred
|
537 |
return model, trainer, metrics
|
538 |
|
539 |
|
src/run_experiments.py
CHANGED
@@ -3,6 +3,7 @@ import sys
|
|
3 |
from collections import defaultdict
|
4 |
import warnings
|
5 |
import logging
|
|
|
6 |
|
7 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
8 |
|
@@ -214,6 +215,8 @@ def main(
|
|
214 |
cv_n_splits: int = 5,
|
215 |
max_epochs: int = 100,
|
216 |
run_sklearn: bool = False,
|
|
|
|
|
217 |
):
|
218 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
219 |
|
@@ -244,10 +247,15 @@ def main(
|
|
244 |
## Get the test sets
|
245 |
test_indeces = {}
|
246 |
active_df = protac_df[protac_df[active_col].notna()].copy()
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
|
|
|
|
|
|
|
|
251 |
|
252 |
# Make directory ../reports if it does not exist
|
253 |
if not os.path.exists('../reports'):
|
@@ -296,22 +304,18 @@ def main(
|
|
296 |
logger_name=f'logs_{experiment_name}',
|
297 |
active_label=active_col,
|
298 |
study_filename=f'../reports/study_{experiment_name}.pkl',
|
|
|
299 |
)
|
300 |
-
cv_report, hparam_report, test_report, ablation_report = optuna_reports
|
301 |
|
302 |
# Save the reports to file
|
303 |
-
for
|
304 |
-
report.to_csv(f'../reports/report_{
|
305 |
-
|
306 |
-
reports['cv'].append(cv_report.copy())
|
307 |
-
reports['hparam'].append(hparam_report.copy())
|
308 |
-
reports['test'].append(test_report.copy())
|
309 |
-
reports['ablation'].append(ablation_report.copy())
|
310 |
|
311 |
# Save the reports to file after concatenating them
|
312 |
-
for
|
313 |
report = pd.concat(report)
|
314 |
-
report.to_csv(f'../reports/report_{
|
315 |
|
316 |
|
317 |
|
|
|
3 |
from collections import defaultdict
|
4 |
import warnings
|
5 |
import logging
|
6 |
+
from typing import Literal
|
7 |
|
8 |
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
9 |
|
|
|
215 |
cv_n_splits: int = 5,
|
216 |
max_epochs: int = 100,
|
217 |
run_sklearn: bool = False,
|
218 |
+
force_study: bool = False,
|
219 |
+
experiments: str | Literal['all', 'random', 'e3_ligase', 'tanimoto', 'uniprot'] = 'all',
|
220 |
):
|
221 |
""" Train a PROTAC model using the given datasets and hyperparameters.
|
222 |
|
|
|
247 |
## Get the test sets
|
248 |
test_indeces = {}
|
249 |
active_df = protac_df[protac_df[active_col].notna()].copy()
|
250 |
+
|
251 |
+
if experiments == 'random' or experiments == 'all':
|
252 |
+
test_indeces['random'] = get_random_split_indices(active_df, test_split)
|
253 |
+
if experiments == 'uniprot' or experiments == 'all':
|
254 |
+
test_indeces['uniprot'] = get_target_split_indices(active_df, active_col, test_split)
|
255 |
+
if experiments == 'e3_ligase' or experiments == 'all':
|
256 |
+
test_indeces['e3_ligase'] = get_e3_ligase_split_indices(active_df)
|
257 |
+
if experiments == 'tanimoto' or experiments == 'all':
|
258 |
+
test_indeces['tanimoto'] = get_tanimoto_split_indices(active_df, active_col, test_split)
|
259 |
|
260 |
# Make directory ../reports if it does not exist
|
261 |
if not os.path.exists('../reports'):
|
|
|
304 |
logger_name=f'logs_{experiment_name}',
|
305 |
active_label=active_col,
|
306 |
study_filename=f'../reports/study_{experiment_name}.pkl',
|
307 |
+
force_study=force_study,
|
308 |
)
|
|
|
309 |
|
310 |
# Save the reports to file
|
311 |
+
for report_name, report in optuna_reports.items():
|
312 |
+
report.to_csv(f'../reports/report_{report_name}_{experiment_name}.csv', index=False)
|
313 |
+
reports[report_name].append(report.copy())
|
|
|
|
|
|
|
|
|
314 |
|
315 |
# Save the reports to file after concatenating them
|
316 |
+
for report_name, report in reports.items():
|
317 |
report = pd.concat(report)
|
318 |
+
report.to_csv(f'../reports/report_{report_name}_{active_name}_test_split_{test_split}.csv', index=False)
|
319 |
|
320 |
|
321 |
|