File size: 20,615 Bytes
ea572f9
165d38a
ea572f9
 
4d17fea
b86d3ec
165d38a
 
 
 
ea572f9
0171744
ea572f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a5a99e
 
 
 
 
 
 
 
 
 
165d38a
 
ea572f9
 
165d38a
 
 
 
 
ea572f9
 
165d38a
ea572f9
 
165d38a
 
 
 
 
 
 
 
 
ea572f9
165d38a
ea572f9
165d38a
ea572f9
 
165d38a
 
 
 
 
 
 
 
 
bda3015
 
ea572f9
bda3015
165d38a
ea572f9
bda3015
 
 
 
 
 
 
 
 
 
 
 
 
ea572f9
bda3015
 
 
 
 
 
 
 
 
 
 
 
ea572f9
 
 
 
 
165d38a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea572f9
165d38a
ea572f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165d38a
 
ea572f9
165d38a
 
ea572f9
165d38a
 
 
 
 
 
 
 
ea572f9
165d38a
ea572f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
165d38a
 
 
 
 
de956c8
165d38a
de956c8
165d38a
de956c8
4d17fea
b86d3ec
 
165d38a
 
 
 
 
 
 
 
 
0171744
 
165d38a
 
ea572f9
165d38a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b86d3ec
 
 
 
 
 
 
 
 
bda3015
ea572f9
 
 
 
 
165d38a
 
ea572f9
165d38a
0171744
ea572f9
4d17fea
 
ea572f9
165d38a
ea572f9
 
 
 
 
 
 
 
 
 
 
 
165d38a
6a5a99e
 
4e1d3f6
6a5a99e
 
 
 
 
 
 
 
 
 
 
de956c8
0171744
6a5a99e
 
 
b86d3ec
4d17fea
6a5a99e
 
b86d3ec
62ccb16
b86d3ec
6a5a99e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea572f9
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import os
import sys
from collections import defaultdict
import warnings
import logging
from typing import Literal

sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))

import protac_degradation_predictor as pdp

import pytorch_lightning as pl
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import DataStructs
from jsonargparse import CLI
import pandas as pd
from tqdm import tqdm
import numpy as np
from sklearn.preprocessing import OrdinalEncoder
from sklearn.model_selection import (
    StratifiedKFold,
    StratifiedGroupKFold,
)

# Ignore UserWarning from Matplotlib
warnings.filterwarnings("ignore", ".*FixedLocator*")
# Ignore UserWarning from PyTorch Lightning
warnings.filterwarnings("ignore", ".*does not have many workers.*")


root = logging.getLogger()
root.setLevel(logging.DEBUG)

handler = logging.StreamHandler(sys.stdout)
handler.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
handler.setFormatter(formatter)
root.addHandler(handler)


def get_random_split_indices(active_df: pd.DataFrame, test_split: float) -> pd.Index:
    """ Get the indices of the test set using a random split.
    
    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
        test_split (float): The percentage of the active PROTACs to use as the test set.
    
    Returns:
        pd.Index: The indices of the test set.
    """
    test_df = active_df.sample(frac=test_split, random_state=42)
    return test_df.index


def get_e3_ligase_split_indices(active_df: pd.DataFrame) -> pd.Index:
    """ Get the indices of the test set using the E3 ligase split.
    
    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
    
    Returns:
        pd.Index: The indices of the test set.
    """
    encoder = OrdinalEncoder()
    active_df['E3 Group'] = encoder.fit_transform(active_df[['E3 Ligase']]).astype(int)
    test_df = active_df[(active_df['E3 Ligase'] != 'VHL') & (active_df['E3 Ligase'] != 'CRBN')]
    return test_df.index


def get_smiles2fp_and_avg_tanimoto(protac_df: pd.DataFrame) -> tuple:
    """ Get the SMILES to fingerprint dictionary and the average Tanimoto similarity.
    
    Args:
        protac_df (pd.DataFrame): The DataFrame containing the PROTACs.
    
    Returns:
        tuple: The SMILES to fingerprint dictionary and the average Tanimoto similarity.
    """
    unique_smiles = protac_df['Smiles'].unique().tolist()

    smiles2fp = {}
    for smiles in tqdm(unique_smiles, desc='Precomputing fingerprints'):
        smiles2fp[smiles] = pdp.get_fingerprint(smiles)

    # # Get the pair-wise tanimoto similarity between the PROTAC fingerprints
    # tanimoto_matrix = defaultdict(list)
    # for i, smiles1 in enumerate(tqdm(protac_df['Smiles'].unique(), desc='Computing Tanimoto similarity')):
    #     fp1 = smiles2fp[smiles1]
    #     # TODO: Use BulkTanimotoSimilarity for better performance
    #     for j, smiles2 in enumerate(protac_df['Smiles'].unique()[i:]):
    #         fp2 = smiles2fp[smiles2]
    #         tanimoto_dist = 1 - DataStructs.TanimotoSimilarity(fp1, fp2)
    #         tanimoto_matrix[smiles1].append(tanimoto_dist)
    # avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
    # protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)


    tanimoto_matrix = defaultdict(list)
    fps = list(smiles2fp.values())

    # Compute all-against-all Tanimoto similarity using BulkTanimotoSimilarity
    for i, (smiles1, fp1) in enumerate(tqdm(zip(unique_smiles, fps), desc='Computing Tanimoto similarity', total=len(fps))):
        similarities = DataStructs.BulkTanimotoSimilarity(fp1, fps[i:])  # Only compute for i to end, avoiding duplicates
        for j, similarity in enumerate(similarities):
            distance = 1 - similarity
            tanimoto_matrix[smiles1].append(distance)  # Store as distance
            if i != i + j:
                tanimoto_matrix[unique_smiles[i + j]].append(distance)  # Symmetric filling

    # Calculate average Tanimoto distance for each unique SMILES
    avg_tanimoto = {k: np.mean(v) for k, v in tanimoto_matrix.items()}
    protac_df['Avg Tanimoto'] = protac_df['Smiles'].map(avg_tanimoto)

    smiles2fp = {s: np.array(fp) for s, fp in smiles2fp.items()}

    return smiles2fp, protac_df


def get_tanimoto_split_indices(
        active_df: pd.DataFrame,
        active_col: str,
        test_split: float,
        n_bins_tanimoto: int = 200,
) -> pd.Index:
    """ Get the indices of the test set using the Tanimoto-based split.
    
    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
        n_bins_tanimoto (int): The number of bins to use for the Tanimoto similarity.
    
    Returns:
        pd.Index: The indices of the test set.
    """
    tanimoto_groups = pd.cut(active_df['Avg Tanimoto'], bins=n_bins_tanimoto).copy()
    encoder = OrdinalEncoder()
    active_df['Tanimoto Group'] = encoder.fit_transform(tanimoto_groups.values.reshape(-1, 1)).astype(int)
    # Sort the groups so that samples with the highest tanimoto similarity,
    # i.e., the "less similar" ones, are placed in the test set first
    tanimoto_groups = active_df.groupby('Tanimoto Group')['Avg Tanimoto'].mean().sort_values(ascending=False).index

    test_df = []
    # For each group, get the number of active and inactive entries. Then, add those
    # entries to the test_df if: 1) the test_df lenght + the group entries is less
    # 20% of the active_df lenght, and 2) the percentage of True and False entries
    # in the active_col in test_df is roughly 50%.
    for group in tanimoto_groups:
        group_df = active_df[active_df['Tanimoto Group'] == group]
        if test_df == []:
            test_df.append(group_df)
            continue
        
        num_entries = len(group_df)
        num_active_group = group_df[active_col].sum()
        num_inactive_group = num_entries - num_active_group

        tmp_test_df = pd.concat(test_df)
        num_entries_test = len(tmp_test_df)
        num_active_test = tmp_test_df[active_col].sum()
        num_inactive_test = num_entries_test - num_active_test
        
        # Check if the group entries can be added to the test_df
        if num_entries_test + num_entries < test_split * len(active_df):
            # Add anything at the beggining
            if num_entries_test + num_entries < test_split / 2 * len(active_df):
                test_df.append(group_df)
                continue
            # Be more selective and make sure that the percentage of active and
            # inactive is balanced
            if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
                if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
                    test_df.append(group_df)
    test_df = pd.concat(test_df)
    return test_df.index


def get_target_split_indices(active_df: pd.DataFrame, active_col: str, test_split: float) -> pd.Index:
    """ Get the indices of the test set using the target-based split.

    Args:
        active_df (pd.DataFrame): The DataFrame containing the active PROTACs.
        active_col (str): The column containing the active/inactive information.
        test_split (float): The percentage of the active PROTACs to use as the test set.

    Returns:
        pd.Index: The indices of the test set.
    """
    encoder = OrdinalEncoder()
    active_df['Uniprot Group'] = encoder.fit_transform(active_df[['Uniprot']]).astype(int)

    test_df = []
    # For each group, get the number of active and inactive entries. Then, add those
    # entries to the test_df if: 1) the test_df lenght + the group entries is less
    # 20% of the active_df lenght, and 2) the percentage of True and False entries
    # in the active_col in test_df is roughly 50%.
    # Start the loop from the groups containing the smallest number of entries.
    for group in reversed(active_df['Uniprot'].value_counts().index):
        group_df = active_df[active_df['Uniprot'] == group]
        if test_df == []:
            test_df.append(group_df)
            continue
        
        num_entries = len(group_df)
        num_active_group = group_df[active_col].sum()
        num_inactive_group = num_entries - num_active_group

        tmp_test_df = pd.concat(test_df)
        num_entries_test = len(tmp_test_df)
        num_active_test = tmp_test_df[active_col].sum()
        num_inactive_test = num_entries_test - num_active_test
        
        # Check if the group entries can be added to the test_df
        if num_entries_test + num_entries < test_split * len(active_df):
            # Add anything at the beggining
            if num_entries_test + num_entries < test_split / 2 * len(active_df):
                test_df.append(group_df)
                continue
            # Be more selective and make sure that the percentage of active and
            # inactive is balanced
            if (num_active_group + num_active_test) / (num_entries_test + num_entries) < 0.6:
                if (num_inactive_group + num_inactive_test) / (num_entries_test + num_entries) < 0.6:
                    test_df.append(group_df)
    test_df = pd.concat(test_df)
    return test_df.index


def main(
    active_col: str = 'Active (Dmax 0.6, pDC50 6.0)',
    n_trials: int = 100,
    fast_dev_run: bool = False,
    test_split: float = 0.1,
    cv_n_splits: int = 5,
    max_epochs: int = 100,
    run_sklearn: bool = False,
    force_study: bool = False,
    experiments: str | Literal['all', 'random', 'e3_ligase', 'tanimoto', 'uniprot'] = 'all',
):
    """ Train a PROTAC model using the given datasets and hyperparameters.
    
    Args:
        use_ored_activity (bool): Whether to use the 'Active - OR' column.
        n_trials (int): The number of hyperparameter optimization trials.
        n_splits (int): The number of cross-validation splits.
        fast_dev_run (bool): Whether to run a fast development run.
    """
    pl.seed_everything(42)

    # Set the Column to Predict
    active_name = active_col.replace(' ', '_').replace('(', '').replace(')', '').replace(',', '')

    # Get Dmax_threshold from the active_col
    Dmax_threshold = float(active_col.split('Dmax')[1].split(',')[0].strip('(').strip(')').strip())
    pDC50_threshold = float(active_col.split('pDC50')[1].strip('(').strip(')').strip())

    # Load the PROTAC dataset
    protac_df = pd.read_csv('../data/PROTAC-Degradation-DB.csv')
    # Map E3 Ligase Iap to IAP
    protac_df['E3 Ligase'] = protac_df['E3 Ligase'].str.replace('Iap', 'IAP')
    protac_df[active_col] = protac_df.apply(
        lambda x: pdp.is_active(x['DC50 (nM)'], x['Dmax (%)'], pDC50_threshold=pDC50_threshold, Dmax_threshold=Dmax_threshold), axis=1
    )
    smiles2fp, protac_df = get_smiles2fp_and_avg_tanimoto(protac_df)

    ## Get the test sets
    test_indeces = {}
    active_df = protac_df[protac_df[active_col].notna()].copy()
    
    if experiments == 'random' or experiments == 'all':
        test_indeces['random'] = get_random_split_indices(active_df, test_split)
    if experiments == 'uniprot' or experiments == 'all':
        test_indeces['uniprot'] = get_target_split_indices(active_df, active_col, test_split)
    if experiments == 'e3_ligase' or experiments == 'all':
        test_indeces['e3_ligase'] = get_e3_ligase_split_indices(active_df)
    if experiments == 'tanimoto' or experiments == 'all':
        test_indeces['tanimoto'] = get_tanimoto_split_indices(active_df, active_col, test_split)

    # Make directory ../reports if it does not exist
    if not os.path.exists('../reports'):
        os.makedirs('../reports')

    # Load embedding dictionaries
    protein2embedding = pdp.load_protein2embedding('../data/uniprot2embedding.h5')
    cell2embedding = pdp.load_cell2embedding('../data/cell2embedding.pkl')

    # Cross-Validation Training
    reports = defaultdict(list)
    for split_type, indeces in test_indeces.items():
        test_df = active_df.loc[indeces].copy()
        train_val_df = active_df[~active_df.index.isin(test_df.index)].copy()
        
        # Get the CV object
        if split_type == 'random':
            kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
            group = None
        elif split_type == 'e3_ligase':
            kf = StratifiedKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
            group = train_val_df['E3 Group'].to_numpy()
        elif split_type == 'tanimoto':
            kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
            group = train_val_df['Tanimoto Group'].to_numpy()
        elif split_type == 'uniprot':
            kf = StratifiedGroupKFold(n_splits=cv_n_splits, shuffle=True, random_state=42)
            group = train_val_df['Uniprot Group'].to_numpy()

        # Start the experiment
        experiment_name = f'{active_name}_test_split_{test_split}_{split_type}'
        optuna_reports = pdp.hyperparameter_tuning_and_training( 
            protein2embedding=protein2embedding,
            cell2embedding=cell2embedding,
            smiles2fp=smiles2fp,
            train_val_df=train_val_df,
            test_df=test_df,
            kf=kf,
            groups=group,
            split_type=split_type,
            n_models_for_test=3,
            fast_dev_run=fast_dev_run,
            n_trials=n_trials,
            max_epochs=max_epochs,
            logger_save_dir='../logs',
            logger_name=f'logs_{experiment_name}',
            active_label=active_col,
            study_filename=f'../reports/study_{experiment_name}.pkl',
            force_study=force_study,
        )

        # Save the reports to file
        for report_name, report in optuna_reports.items():
            report.to_csv(f'../reports/{report_name}_{experiment_name}.csv', index=False)
            reports[report_name].append(report.copy())

        # # Start the CV over the folds
        # X = train_val_df.drop(columns=active_col)
        # y = train_val_df[active_col].tolist()
        # for k, (train_index, val_index) in enumerate(kf.split(X, y, group)):
        #     print('-' * 100)
        #     print(f'Starting CV for group type: {split_type}, fold: {k}')
        #     print('-' * 100)
        #     train_df = train_val_df.iloc[train_index]
        #     val_df = train_val_df.iloc[val_index]

        #     leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
        #     leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))

        #     stats = {
        #         'fold': k,
        #         'split_type': split_type,
        #         'train_len': len(train_df),
        #         'val_len': len(val_df),
        #         'train_perc': len(train_df) / len(train_val_df),
        #         'val_perc': len(val_df) / len(train_val_df),
        #         'train_active_perc': train_df[active_col].sum() / len(train_df),
        #         'train_inactive_perc': (len(train_df) - train_df[active_col].sum()) / len(train_df),
        #         'val_active_perc': val_df[active_col].sum() / len(val_df),
        #         'val_inactive_perc': (len(val_df) - val_df[active_col].sum()) / len(val_df),
        #         'test_active_perc': test_df[active_col].sum() / len(test_df),
        #         'test_inactive_perc': (len(test_df) - test_df[active_col].sum()) / len(test_df),
        #         'num_leaking_uniprot': len(leaking_uniprot),
        #         'num_leaking_smiles': len(leaking_smiles),
        #         'train_leaking_uniprot_perc': len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df),
        #         'train_leaking_smiles_perc': len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df),
        #     }
        #     if split_type != 'random':
        #         stats['train_unique_groups'] = len(np.unique(group[train_index]))
        #         stats['val_unique_groups'] = len(np.unique(group[val_index]))

        #     # At each fold, train and evaluate the Pytorch model
        #     if split_type != 'tanimoto' or run_sklearn:
        #         logging.info(f'Skipping Pytorch model training on fold {k} with split type {split_type} and test split {test_split}.')
        #         continue
        #     else:
        #         logging.info(f'Starting Pytorch model training on fold {k} with split type {split_type} and test split {test_split}.')
        #         # Train and evaluate the model
        #         model, trainer, metrics = pdp.hyperparameter_tuning_and_training(
        #             protein2embedding,
        #             cell2embedding,
        #             smiles2fp,
        #             train_df,
        #             val_df,
        #             test_df,
        #             fast_dev_run=fast_dev_run,
        #             n_trials=n_trials,
        #             logger_name=f'protac_{active_name}_{split_type}_fold_{k}_test_split_{test_split}',
        #             active_label=active_col,
        #             study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}.pkl',
        #         )
        #         hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
        #         stats.update(metrics)
        #         stats['model_type'] = 'Pytorch'
        #         report.append(stats.copy())
        #         del model
        #         del trainer

        #         # Ablation study: disable embeddings at a time
        #         for disabled_embeddings in [['e3'], ['poi'], ['cell'], ['smiles'], ['e3', 'cell'], ['poi', 'e3', 'cell']]:
        #             print('-' * 100)
        #             print(f'Ablation study with disabled embeddings: {disabled_embeddings}')
        #             print('-' * 100)
        #             stats['disabled_embeddings'] = 'disabled ' + ' '.join(disabled_embeddings)
        #             model, trainer, metrics = pdp.train_model(
        #                 protein2embedding,
        #                 cell2embedding,
        #                 smiles2fp,
        #                 train_df,
        #                 val_df,
        #                 test_df,
        #                 fast_dev_run=fast_dev_run,
        #                 logger_name=f'protac_{active_name}_{split_type}_fold_{k}_disabled-{"-".join(disabled_embeddings)}',
        #                 active_label=active_col,
        #                 disabled_embeddings=disabled_embeddings,
        #                 **hparams,
        #             )
        #             stats.update(metrics)
        #             report.append(stats.copy())
        #             del model
        #             del trainer

        #     # At each fold, train and evaluate sklearn models
        #     if run_sklearn:
        #         for model_type in ['RandomForest', 'SVC', 'LogisticRegression', 'GradientBoosting']:
        #             logging.info(f'Starting sklearn model {model_type} training on fold {k} with split type {split_type} and test split {test_split}.')
        #             # Train and evaluate sklearn models
        #             model, metrics = pdp.hyperparameter_tuning_and_training_sklearn(
        #                 protein2embedding=protein2embedding,
        #                 cell2embedding=cell2embedding,
        #                 smiles2fp=smiles2fp,
        #                 train_df=train_df,
        #                 val_df=val_df,
        #                 test_df=test_df,
        #                 model_type=model_type,
        #                 active_label=active_col,
        #                 n_trials=n_trials,
        #                 study_filename=f'../reports/study_{active_name}_{split_type}_fold_{k}_test_split_{test_split}_{model_type.lower()}.pkl',
        #             )
        #             hparams = {p.replace('hparam_', ''): v for p, v in stats.items() if p.startswith('hparam_')}
        #             stats['model_type'] = model_type
        #             stats.update(metrics)
        #             report.append(stats.copy())

        # # Save the report at the end of each split type
        # report_df = pd.DataFrame(report)
        # report_df.to_csv(
        #     f'../reports/cv_report_hparam_search_{cv_n_splits}-splits_{active_name}_test_split_{test_split}{"_sklearn" if run_sklearn else ""}.csv',
        #     index=False,
        # )


if __name__ == '__main__':
    cli = CLI(main)