File size: 26,246 Bytes
5e01175 4d17fea 5e01175 4e1d3f6 ea572f9 5e01175 b86d3ec 5e01175 6a5a99e b86d3ec bda3015 b86d3ec bda3015 b86d3ec bda3015 b86d3ec 5e01175 4e1d3f6 5e01175 6a5a99e 0171744 5e01175 bda3015 5e01175 6a5a99e 5e01175 bda3015 5e01175 bda3015 5e01175 b7582e0 5e01175 6a5a99e de956c8 6a5a99e b86d3ec 6a5a99e b86d3ec 6a5a99e b86d3ec 6a5a99e b86d3ec de956c8 0171744 6a5a99e b7582e0 6a5a99e b86d3ec 6a5a99e bda3015 6a5a99e b86d3ec fda7af7 b86d3ec fda7af7 6a5a99e b86d3ec 62ccb16 4e1d3f6 b86d3ec 6a5a99e 5e01175 b86d3ec 5e01175 6a5a99e 5e01175 0171744 5e01175 6a5a99e 5e01175 b86d3ec 5e01175 6a5a99e 5e01175 b7582e0 bda3015 5e01175 bda3015 5e01175 b86d3ec 5e01175 4d17fea 4e1d3f6 5e01175 b86d3ec 5e01175 6a5a99e 0171744 5e01175 b86d3ec 5e01175 6a5a99e 5e01175 6a5a99e bda3015 6a5a99e 4e1d3f6 0171744 b86d3ec 6a5a99e de956c8 4e1d3f6 6a5a99e 0171744 de956c8 6a5a99e de956c8 b86d3ec bda3015 6a5a99e b86d3ec 0171744 6a5a99e b86d3ec 4e1d3f6 6a5a99e b86d3ec 62ccb16 4e1d3f6 62ccb16 b86d3ec 6a5a99e b86d3ec b7582e0 6a5a99e 4e1d3f6 0171744 4e1d3f6 0171744 6a5a99e 5e01175 6a5a99e b86d3ec 62ccb16 b86d3ec 5e01175 4d17fea 5e01175 4d17fea 5e01175 4d17fea 5e01175 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 |
import os
from typing import Literal, List, Tuple, Optional, Dict
import logging
from .pytorch_models import (
train_model,
PROTAC_Model,
evaluate_model,
)
from .protac_dataset import get_datasets
from .sklearn_models import (
train_sklearn_model,
suggest_random_forest,
suggest_logistic_regression,
suggest_svc,
suggest_gradient_boosting,
)
import torch
import optuna
from optuna.samplers import TPESampler
import joblib
import pandas as pd
from sklearn.ensemble import (
RandomForestClassifier,
GradientBoostingClassifier,
)
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.model_selection import (
StratifiedKFold,
StratifiedGroupKFold,
)
import numpy as np
import pytorch_lightning as pl
from torchmetrics import (
Accuracy,
AUROC,
Precision,
Recall,
F1Score,
)
def get_dataframe_stats(
train_df = None,
val_df = None,
test_df = None,
active_label = 'Active',
) -> Dict:
""" Get some statistics from the dataframes.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
"""
stats = {}
if train_df is not None:
stats['train_len'] = len(train_df)
stats['train_active_perc'] = train_df[active_label].sum() / len(train_df)
stats['train_inactive_perc'] = (len(train_df) - train_df[active_label].sum()) / len(train_df)
stats['train_avg_tanimoto_dist'] = train_df['Avg Tanimoto'].mean()
if val_df is not None:
stats['val_len'] = len(val_df)
stats['val_active_perc'] = val_df[active_label].sum() / len(val_df)
stats['val_inactive_perc'] = (len(val_df) - val_df[active_label].sum()) / len(val_df)
stats['val_avg_tanimoto_dist'] = val_df['Avg Tanimoto'].mean()
if test_df is not None:
stats['test_len'] = len(test_df)
stats['test_active_perc'] = test_df[active_label].sum() / len(test_df)
stats['test_inactive_perc'] = (len(test_df) - test_df[active_label].sum()) / len(test_df)
stats['test_avg_tanimoto_dist'] = test_df['Avg Tanimoto'].mean()
if train_df is not None and val_df is not None:
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(val_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(val_df['Smiles'])))
stats['num_leaking_uniprot_train_val'] = len(leaking_uniprot)
stats['num_leaking_smiles_train_val'] = len(leaking_smiles)
stats['perc_leaking_uniprot_train_val'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
stats['perc_leaking_smiles_train_val'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
if train_df is not None and test_df is not None:
leaking_uniprot = list(set(train_df['Uniprot']).intersection(set(test_df['Uniprot'])))
leaking_smiles = list(set(train_df['Smiles']).intersection(set(test_df['Smiles'])))
stats['num_leaking_uniprot_train_test'] = len(leaking_uniprot)
stats['num_leaking_smiles_train_test'] = len(leaking_smiles)
stats['perc_leaking_uniprot_train_test'] = len(train_df[train_df['Uniprot'].isin(leaking_uniprot)]) / len(train_df)
stats['perc_leaking_smiles_train_test'] = len(train_df[train_df['Smiles'].isin(leaking_smiles)]) / len(train_df)
return stats
def get_majority_vote_metrics(
test_preds: List,
test_df: pd.DataFrame,
active_label: str = 'Active',
) -> Dict:
""" Get the majority vote metrics. """
test_preds = torch.stack(test_preds)
test_preds, _ = torch.mode(test_preds, dim=0)
y = torch.tensor(test_df[active_label].tolist())
# Measure the test accuracy and ROC AUC
majority_vote_metrics = {
'test_acc': Accuracy(task='binary')(test_preds, y).item(),
'test_roc_auc': AUROC(task='binary')(test_preds, y).item(),
'test_precision': Precision(task='binary')(test_preds, y).item(),
'test_recall': Recall(task='binary')(test_preds, y).item(),
'test_f1': F1Score(task='binary')(test_preds, y).item(),
}
return majority_vote_metrics
def pytorch_model_objective(
trial: optuna.Trial,
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_val_df: pd.DataFrame,
kf: StratifiedKFold | StratifiedGroupKFold,
groups: Optional[np.array] = None,
test_df: Optional[pd.DataFrame] = None,
hidden_dim_options: List[int] = [256, 512, 768],
batch_size_options: List[int] = [8, 16, 32],
learning_rate_options: Tuple[float, float] = (1e-5, 1e-3),
smote_k_neighbors_options: List[int] = list(range(3, 16)),
dropout_options: Tuple[float, float] = (0.1, 0.5),
fast_dev_run: bool = False,
active_label: str = 'Active',
disabled_embeddings: List[str] = [],
max_epochs: int = 100,
use_logger: bool = False,
logger_save_dir: str = 'logs',
logger_name: str = 'cv_model',
enable_checkpointing: bool = False,
) -> float:
""" Objective function for hyperparameter optimization.
Args:
trial (optuna.Trial): The Optuna trial object.
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
hidden_dim_options (List[int]): The hidden dimension options.
batch_size_options (List[int]): The batch size options.
learning_rate_options (Tuple[float, float]): The learning rate options.
smote_k_neighbors_options (List[int]): The SMOTE k neighbors options.
dropout_options (Tuple[float, float]): The dropout options.
fast_dev_run (bool): Whether to run a fast development run.
active_label (str): The active label column.
disabled_embeddings (List[str]): The list of disabled embeddings.
"""
# Suggest hyperparameters to be used accross the CV folds
hidden_dim = trial.suggest_categorical('hidden_dim', hidden_dim_options)
batch_size = 128 # trial.suggest_categorical('batch_size', batch_size_options)
learning_rate = trial.suggest_float('learning_rate', *learning_rate_options, log=True)
smote_k_neighbors = trial.suggest_categorical('smote_k_neighbors', smote_k_neighbors_options)
use_smote = trial.suggest_categorical('use_smote', [True, False])
apply_scaling = True # trial.suggest_categorical('apply_scaling', [True, False])
dropout = trial.suggest_float('dropout', *dropout_options)
use_batch_norm = trial.suggest_categorical('use_batch_norm', [True, False])
# Start the CV over the folds
X = train_val_df.copy().drop(columns=active_label)
y = train_val_df[active_label].tolist()
report = []
val_preds = []
test_preds = []
for k, (train_index, val_index) in enumerate(kf.split(X, y, groups)):
logging.info(f'Fold {k + 1}/{kf.get_n_splits()}')
# Get the train and val sets
train_df = train_val_df.iloc[train_index]
val_df = train_val_df.iloc[val_index]
# Get some statistics from the dataframes
stats = {
'model_type': 'Pytorch',
'fold': k,
'train_len': len(train_df),
'val_len': len(val_df),
'train_perc': len(train_df) / len(train_val_df),
'val_perc': len(val_df) / len(train_val_df),
}
stats.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
if groups is not None:
stats['train_unique_groups'] = len(np.unique(groups[train_index]))
stats['val_unique_groups'] = len(np.unique(groups[val_index]))
# At each fold, train and evaluate the Pytorch model
# Train the model with the current set of hyperparameters
ret = train_model(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
test_df=test_df,
hidden_dim=hidden_dim,
batch_size=batch_size,
learning_rate=learning_rate,
dropout=dropout,
use_batch_norm=use_batch_norm,
max_epochs=max_epochs,
smote_k_neighbors=smote_k_neighbors,
apply_scaling=apply_scaling,
use_smote=use_smote,
fast_dev_run=fast_dev_run,
active_label=active_label,
return_predictions=True,
disabled_embeddings=disabled_embeddings,
use_logger=use_logger,
logger_save_dir=logger_save_dir,
logger_name=f'{logger_name}_fold{k}',
enable_checkpointing=enable_checkpointing,
)
if test_df is not None:
_, _, metrics, val_pred, test_pred = ret
test_preds.append(test_pred)
else:
_, _, metrics, val_pred = ret
stats.update(metrics)
report.append(stats.copy())
val_preds.append(val_pred)
# Save the report in the trial
trial.set_user_attr('report', report)
# Get the majority vote for the test predictions
if test_df is not None and not fast_dev_run:
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(get_dataframe_stats(train_df, val_df, test_df, active_label))
trial.set_user_attr('majority_vote_metrics', majority_vote_metrics)
logging.info(f'Majority vote metrics: {majority_vote_metrics}')
# Get the average validation accuracy and ROC AUC accross the folds
val_roc_auc = np.mean([r['val_roc_auc'] for r in report])
# Optuna aims to minimize the pytorch_model_objective
return - val_roc_auc
def hyperparameter_tuning_and_training(
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_val_df: pd.DataFrame,
test_df: pd.DataFrame,
kf: StratifiedKFold | StratifiedGroupKFold,
groups: Optional[np.array] = None,
split_type: str = 'random',
n_models_for_test: int = 3,
fast_dev_run: bool = False,
n_trials: int = 50,
logger_save_dir: str = 'logs',
logger_name: str = 'protac_hparam_search',
active_label: str = 'Active',
max_epochs: int = 100,
study_filename: Optional[str] = None,
force_study: bool = False,
) -> tuple:
""" Hyperparameter tuning and training of a PROTAC model.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
fast_dev_run (bool): Whether to run a fast development run.
n_trials (int): The number of hyperparameter optimization trials.
logger_name (str): The name of the logger.
active_label (str): The active label column.
disabled_embeddings (List[str]): The list of disabled embeddings.
Returns:
tuple: The trained model, the trainer, and the best metrics.
"""
pl.seed_everything(42)
# Define the search space
hidden_dim_options = [16, 32, 64, 128, 256] #, 512]
batch_size_options = [128, 128] # [4, 8, 16, 32, 64, 128]
learning_rate_options = (1e-6, 1e-3) # min and max values for loguniform distribution
smote_k_neighbors_options = list(range(3, 16))
# NOTE: We want Optuna to explore the combination (very low dropout, very
# small hidden_dim)
dropout_options = (0, 0.5)
# Set the verbosity of Optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
# Create an Optuna study object
sampler = TPESampler(seed=42, multivariate=True)
study = optuna.create_study(direction='minimize', sampler=sampler)
study_loaded = False
if study_filename and not force_study:
if os.path.exists(study_filename):
study = joblib.load(study_filename)
study_loaded = True
logging.info(f'Loaded study from {study_filename}')
logging.info(f'Study best params: {study.best_params}')
if not study_loaded or force_study:
study.optimize(
lambda trial: pytorch_model_objective(
trial=trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_val_df=train_val_df,
kf=kf,
groups=groups,
test_df=test_df,
hidden_dim_options=hidden_dim_options,
batch_size_options=batch_size_options,
learning_rate_options=learning_rate_options,
smote_k_neighbors_options=smote_k_neighbors_options,
dropout_options=dropout_options,
fast_dev_run=fast_dev_run,
active_label=active_label,
max_epochs=max_epochs,
disabled_embeddings=[],
),
n_trials=n_trials,
)
if study_filename:
joblib.dump(study, study_filename)
cv_report = pd.DataFrame(study.best_trial.user_attrs['report'])
hparam_report = pd.DataFrame([study.best_params])
# Train the best CV models and store their checkpoints by running the objective
pytorch_model_objective(
trial=study.best_trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_val_df=train_val_df,
kf=kf,
groups=groups,
test_df=test_df,
hidden_dim_options=hidden_dim_options,
batch_size_options=batch_size_options,
learning_rate_options=learning_rate_options,
smote_k_neighbors_options=smote_k_neighbors_options,
dropout_options=dropout_options,
fast_dev_run=fast_dev_run,
active_label=active_label,
max_epochs=max_epochs,
disabled_embeddings=[],
use_logger=True,
logger_save_dir=logger_save_dir,
logger_name=f'{logger_name}_{split_type}_cv_model',
enable_checkpointing=True,
)
# Retrain N models with the best hyperparameters (measure model uncertainty)
best_models = []
test_report = []
test_preds = []
dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
for i in range(n_models_for_test):
pl.seed_everything(42 + i + 1)
model, trainer, metrics, test_pred = train_model(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_val_df,
val_df=test_df,
fast_dev_run=fast_dev_run,
active_label=active_label,
max_epochs=max_epochs,
disabled_embeddings=[],
use_logger=True,
logger_save_dir=logger_save_dir,
logger_name=f'{logger_name}_best_model_n{i}',
enable_checkpointing=True,
checkpoint_model_name=f'best_model_n{i}_{split_type}',
return_predictions=True,
batch_size=128,
apply_scaling=True,
**study.best_params,
)
# Rename the keys in the metrics dictionary
metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
metrics['model_type'] = 'Pytorch'
metrics['test_model_id'] = i
metrics.update(dfs_stats)
test_report.append(metrics.copy())
test_preds.append(test_pred)
best_models.append({'model': model, 'trainer': trainer})
test_report = pd.DataFrame(test_report)
# Get the majority vote for the test predictions
if not fast_dev_run:
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label))
majority_vote_metrics_cv = study.best_trial.user_attrs['majority_vote_metrics']
majority_vote_metrics_cv['cv_models'] = True
majority_vote_report = pd.DataFrame([
majority_vote_metrics,
majority_vote_metrics_cv,
])
majority_vote_report['model_type'] = 'Pytorch'
majority_vote_report['split_type'] = split_type
# Ablation study: disable embeddings at a time
ablation_report = []
dfs_stats = get_dataframe_stats(train_val_df, test_df=test_df, active_label=active_label)
disabled_embeddings_combinations = [
['e3'],
['poi'],
['cell'],
['smiles'],
['e3', 'cell'],
['poi', 'e3'],
['poi', 'e3', 'cell'],
]
for disabled_embeddings in disabled_embeddings_combinations:
logging.info('-' * 100)
logging.info(f'Ablation study with disabled embeddings: {disabled_embeddings}')
logging.info('-' * 100)
disabled_embeddings_str = 'disabled ' + ' '.join(disabled_embeddings)
test_preds = []
for i, model_trainer in enumerate(best_models):
logging.info(f'Evaluating model n.{i} on {disabled_embeddings_str}.')
model = model_trainer['model']
trainer = model_trainer['trainer']
_, test_ds, _ = get_datasets(
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_val_df,
val_df=test_df,
disabled_embeddings=disabled_embeddings,
active_label=active_label,
scaler=model.scalers,
use_single_scaler=model.join_embeddings == 'beginning',
)
ret = evaluate_model(model, trainer, test_ds, batch_size=128)
# NOTE: We are passing the test set as the validation set argument
# Rename the keys in the metrics dictionary
test_preds.append(ret['val_pred'])
ret['val_metrics'] = {k.replace('val_', 'test_'): v for k, v in ret['val_metrics'].items()}
ret['val_metrics'].update(dfs_stats)
ret['val_metrics']['majority_vote'] = False
ret['val_metrics']['model_type'] = 'Pytorch'
ret['val_metrics']['disabled_embeddings'] = disabled_embeddings_str
ablation_report.append(ret['val_metrics'].copy())
# Get the majority vote for the test predictions
if not fast_dev_run:
majority_vote_metrics = get_majority_vote_metrics(test_preds, test_df, active_label)
majority_vote_metrics.update(dfs_stats)
majority_vote_metrics['majority_vote'] = True
majority_vote_metrics['model_type'] = 'Pytorch'
majority_vote_metrics['disabled_embeddings'] = disabled_embeddings_str
ablation_report.append(majority_vote_metrics.copy())
# _, _, metrics = train_model(
# protein2embedding=protein2embedding,
# cell2embedding=cell2embedding,
# smiles2fp=smiles2fp,
# train_df=train_val_df,
# val_df=test_df,
# fast_dev_run=fast_dev_run,
# active_label=active_label,
# max_epochs=max_epochs,
# use_logger=False,
# logger_save_dir=logger_save_dir,
# logger_name=f'{logger_name}_disabled-{"-".join(disabled_embeddings)}',
# disabled_embeddings=disabled_embeddings,
# batch_size=128,
# apply_scaling=True,
# **study.best_params,
# )
# # Rename the keys in the metrics dictionary
# metrics = {k.replace('val_', 'test_'): v for k, v in metrics.items()}
# metrics['disabled_embeddings'] = disabled_embeddings_str
# metrics['model_type'] = 'Pytorch'
# metrics.update(dfs_stats)
# # Add the training metrics
# train_metrics = {m: v.item() for m, v in trainer.callback_metrics.items() if 'train' in m}
# metrics.update(train_metrics)
# ablation_report.append(metrics.copy())
ablation_report = pd.DataFrame(ablation_report)
# Add a column with the split_type to all reports
for report in [cv_report, hparam_report, test_report, ablation_report]:
report['split_type'] = split_type
# Return the reports
ret = {
'cv_report': cv_report,
'hparam_report': hparam_report,
'test_report': test_report,
'ablation_report': ablation_report,
}
if not fast_dev_run:
ret['majority_vote_report'] = majority_vote_report
return ret
def sklearn_model_objective(
trial: optuna.Trial,
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_df: pd.DataFrame,
val_df: pd.DataFrame,
model_type: Literal['RandomForest', 'SVC', 'LogisticRegression', 'GradientBoosting'] = 'RandomForest',
active_label: str = 'Active',
) -> float:
""" Objective function for hyperparameter optimization.
Args:
trial (optuna.Trial): The Optuna trial object.
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
model_type (str): The model type.
hyperparameters (Dict): The hyperparameters for the model.
fast_dev_run (bool): Whether to run a fast development run.
active_label (str): The active label column.
"""
# Generate the hyperparameters
use_single_scaler = trial.suggest_categorical('use_single_scaler', [True, False])
if model_type == 'RandomForest':
clf = suggest_random_forest(trial)
elif model_type == 'SVC':
clf = suggest_svc(trial)
elif model_type == 'LogisticRegression':
clf = suggest_logistic_regression(trial)
elif model_type == 'GradientBoosting':
clf = suggest_gradient_boosting(trial)
else:
raise ValueError(f'Invalid model type: {model_type}. Available: RandomForest, SVC, LogisticRegression, GradientBoosting.')
# Train the model with the current set of hyperparameters
_, metrics = train_sklearn_model(
clf=clf,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
active_label=active_label,
use_single_scaler=use_single_scaler,
)
# Metrics is a dictionary containing at least the validation loss
val_acc = metrics['val_acc']
val_roc_auc = metrics['val_roc_auc']
# Optuna aims to minimize the sklearn_model_objective
return - val_acc - val_roc_auc
def hyperparameter_tuning_and_training_sklearn(
protein2embedding: Dict,
cell2embedding: Dict,
smiles2fp: Dict,
train_df: pd.DataFrame,
val_df: pd.DataFrame,
test_df: Optional[pd.DataFrame] = None,
model_type: Literal['RandomForest', 'SVC', 'LogisticRegression', 'GradientBoosting'] = 'RandomForest',
active_label: str = 'Active',
n_trials: int = 50,
logger_name: str = 'protac_hparam_search_sklearn',
study_filename: Optional[str] = None,
) -> Tuple:
""" Hyperparameter tuning and training of a PROTAC model.
Args:
train_df (pd.DataFrame): The training set.
val_df (pd.DataFrame): The validation set.
test_df (pd.DataFrame): The test set.
model_type (str): The model type.
n_trials (int): The number of hyperparameter optimization trials.
logger_name (str): The name of the logger. Unused, for compatibility with hyperparameter_tuning_and_training.
active_label (str): The active label column.
Returns:
tuple: The trained model and the best metrics.
"""
# Set the verbosity of Optuna
optuna.logging.set_verbosity(optuna.logging.WARNING)
# Create an Optuna study object
sampler = TPESampler(seed=42, multivariate=True)
study = optuna.create_study(direction='minimize', sampler=sampler)
study_loaded = False
if study_filename:
if os.path.exists(study_filename):
study = joblib.load(study_filename)
study_loaded = True
logging.info(f'Loaded study from {study_filename}')
if not study_loaded:
study.optimize(
lambda trial: sklearn_model_objective(
trial=trial,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
model_type=model_type,
active_label=active_label,
),
n_trials=n_trials,
)
if study_filename:
joblib.dump(study, study_filename)
# Retrain the model with the best hyperparameters
best_hyperparameters = {k.replace('model_', ''): v for k, v in study.best_params.items() if k.startswith('model_')}
if model_type == 'RandomForest':
clf = RandomForestClassifier(random_state=42, **best_hyperparameters)
elif model_type == 'SVC':
clf = SVC(random_state=42, probability=True, **best_hyperparameters)
elif model_type == 'LogisticRegression':
clf = LogisticRegression(random_state=42, max_iter=1000, **best_hyperparameters)
elif model_type == 'GradientBoosting':
clf = GradientBoostingClassifier(random_state=42, **best_hyperparameters)
else:
raise ValueError(f'Invalid model type: {model_type}. Available: RandomForest, SVC, LogisticRegression, GradientBoosting.')
model, metrics = train_sklearn_model(
clf=clf,
protein2embedding=protein2embedding,
cell2embedding=cell2embedding,
smiles2fp=smiles2fp,
train_df=train_df,
val_df=val_df,
test_df=test_df,
active_label=active_label,
use_single_scaler=study.best_params['use_single_scaler'],
)
# Report the best hyperparameters found
metrics.update({f'hparam_{k}': v for k, v in study.best_params.items()})
# Return the best metrics
return model, metrics |