Spaces:
Running
Running
File size: 14,360 Bytes
291b9f4 e13455c 1a102e1 e13455c dc43c61 bbf7597 39bd3a6 bbf7597 998e0cb 8faa556 754923b 8faa556 754923b 8faa556 e13455c 5b25c6e e13455c dc43c61 642181a 886c1e1 642181a 886c1e1 642181a 886c1e1 642181a 886c1e1 642181a 886c1e1 642181a e13455c 642181a 706b71b 642181a 886c1e1 e13455c 642181a e13455c ab6e218 10ab9f9 95641f9 10ab9f9 8faa556 754923b 3a54f53 754923b bbf7597 754923b 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 754923b bbf7597 754923b bbf7597 754923b bbf7597 754923b bbf7597 754923b bbf7597 754923b bbf7597 754923b bbf7597 8faa556 bbf7597 8faa556 39bd3a6 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 8faa556 bbf7597 8faa556 c114093 8faa556 9ba8cc6 8faa556 bbf7597 998e0cb bbf7597 c114093 bbf7597 c114093 bbf7597 8faa556 bbbeb15 8faa556 9dae67d 95641f9 bbbeb15 5e0a3f7 19a4c6d bbbeb15 95641f9 bbf7597 a1e6e83 f013965 9dae67d a1e6e83 19a4c6d bbf7597 9dae67d 19a4c6d 9dae67d bbf7597 e89a3bf bbf7597 dc43c61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
from fastapi import FastAPI, File, UploadFile, HTTPException, Depends, Header
from pydantic import BaseModel
import os
from pymongo import MongoClient
from langchain_community.embeddings import SentenceTransformerEmbeddings
from langchain_community.vectorstores import MongoDBAtlasVectorSearch
import uvicorn
from dotenv import load_dotenv
from fastapi.middleware.cors import CORSMiddleware
from uuid import uuid4
import joblib
import librosa
import numpy as np
import pandas as pd
import numpy as np
import librosa.display
import soundfile as sf
import opensmile
import ffmpeg
import noisereduce as nr
default_sample_rate=22050
def load(file_name, skip_seconds=0):
return librosa.load(file_name, sr=None, res_type='kaiser_fast')
# def preprocess_audio(audio_data, rate):
# # Apply preprocessing steps
# audio_data = nr.reduce_noise(y=audio_data, sr=rate)
# audio_data = librosa.util.normalize(audio_data)
# audio_data, _ = librosa.effects.trim(audio_data)
# audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
# # audio_data = fix_length(audio_data)
# rate = default_sample_rate
# return audio_data, rate
def extract_features(X, sample_rate):
# Generate Mel-frequency cepstral coefficients (MFCCs) from a time series
mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate, n_mfcc=40).T,axis=0)
# Generates a Short-time Fourier transform (STFT) to use in the chroma_stft
stft = np.abs(librosa.stft(X))
# Computes a chromagram from a waveform or power spectrogram.
chroma = np.mean(librosa.feature.chroma_stft(S=stft, sr=sample_rate).T,axis=0)
# Computes a mel-scaled spectrogram.
mel = np.mean(librosa.feature.melspectrogram(y=X, sr=sample_rate).T,axis=0)
# Computes spectral contrast
contrast = np.mean(librosa.feature.spectral_contrast(S=stft, sr=sample_rate).T,axis=0)
# Computes the tonal centroid features (tonnetz)
tonnetz = np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X),sr=sample_rate).T,axis=0)
# Concatenate all feature arrays into a single 1D array
combined_features = np.hstack([mfccs, chroma, mel, contrast, tonnetz])
return combined_features
load_dotenv()
# MongoDB connection
MONGODB_ATLAS_CLUSTER_URI = os.getenv("MONGODB_ATLAS_CLUSTER_URI", None)
client = MongoClient(MONGODB_ATLAS_CLUSTER_URI)
DB_NAME = "quran_db"
COLLECTION_NAME = "tafsir"
ATLAS_VECTOR_SEARCH_INDEX_NAME = "langchain_index"
MONGODB_COLLECTION = client[DB_NAME][COLLECTION_NAME]
embeddings = SentenceTransformerEmbeddings(model_name="BAAI/bge-m3")
vector_search = MongoDBAtlasVectorSearch.from_connection_string(
MONGODB_ATLAS_CLUSTER_URI,
DB_NAME + "." + COLLECTION_NAME,
embeddings,
index_name=ATLAS_VECTOR_SEARCH_INDEX_NAME,
)
# FastAPI application setup
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def index_file(filepath):
""" Index each block in a file separated by double newlines for quick search.
Returns a dictionary with key as content and value as block number. """
index = {}
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read() # Read the whole file at once
blocks = content.split("\n\n") # Split the content by double newlines
for block_number, block in enumerate(blocks, 1): # Starting block numbers at 1 for human readability
# Replace single newlines within blocks with space and strip leading/trailing whitespace
formatted_block = ' '.join(block.split('\n')).strip()
index[formatted_block] = block_number
# if(block_number == 100):
# print(formatted_block) # Print the 5th block
return index
def get_text_by_block_number(filepath, block_numbers):
""" Retrieve specific blocks from a file based on block numbers, where each block is separated by '\n\n'. """
blocks_text = []
with open(filepath, 'r', encoding='utf-8') as file:
content = file.read() # Read the whole file at once
blocks = content.split("\n\n") # Split the content by double newlines
for block_number, block in enumerate(blocks, 1): # Starting block numbers at 1 for human readability
if block_number in block_numbers:
# Replace single newlines within blocks with space and strip leading/trailing whitespace
formatted_block = ' '.join(block.split('\n')).strip()
blocks_text.append(formatted_block)
if len(blocks_text) == len(block_numbers): # Stop reading once all required blocks are retrieved
break
return blocks_text
# Existing API endpoints
@app.get("/")
async def read_root():
return {"message": "Welcome to our app"}
# New Query model for the POST request body
class Item(BaseModel):
question: str
EXPECTED_TOKEN = os.getenv("API_TOKEN")
def verify_token(authorization: str = Header(None)):
"""
Dependency to verify the Authorization header contains the correct Bearer token.
"""
# Prefix for bearer token in the Authorization header
prefix = "Bearer "
# Check if the Authorization header is present and correctly formatted
if not authorization or not authorization.startswith(prefix):
raise HTTPException(status_code=401, detail="Unauthorized: Missing or invalid token")
# Extract the token from the Authorization header
token = authorization[len(prefix):]
# Compare the extracted token to the expected token value
if token != EXPECTED_TOKEN:
raise HTTPException(status_code=401, detail="Unauthorized: Incorrect token")
# New API endpoint to get an answer using the chain
@app.post("/get_answer")
async def get_answer(item: Item, token: str = Depends(verify_token)):
try:
# Perform the similarity search with the provided question
matching_docs = vector_search.similarity_search(item.question, k=3)
clean_answers = [doc.page_content.replace("\n", " ").strip() for doc in matching_docs]
# Assuming 'search_file.txt' is where we want to search answers
answers_index = index_file('app/quran_tafseer_formatted.txt')
# Collect line numbers based on answers found
line_numbers = [answers_index[answer] for answer in clean_answers if answer in answers_index]
# Assuming 'retrieve_file.txt' is where we retrieve lines based on line numbers
result_text = get_text_by_block_number('app/quran_tafseer.txt', line_numbers)
return {"result_text": result_text}
except Exception as e:
# If there's an error, return a 500 error with the error's details
raise HTTPException(status_code=500, detail=str(e))
# random forest
model = joblib.load('app/1713661391.0946255_trained_model.joblib')
pca = joblib.load('app/pca.pkl')
scaler = joblib.load('app/1713661464.8205004_scaler.joblib')
label_encoder = joblib.load('app/1713661470.6730225_label_encoder.joblib')
def preprocess_audio(audio_data, rate):
audio_data = nr.reduce_noise(y=audio_data, sr=rate)
# remove silence
# intervals = librosa.effects.split(audio_data, top_db=20)
# # Concatenate non-silent intervals
# audio_data = np.concatenate([audio_data[start:end] for start, end in intervals])
audio_data = librosa.util.normalize(audio_data)
audio_data, _ = librosa.effects.trim(audio_data)
audio_data = librosa.resample(audio_data, orig_sr=rate, target_sr=default_sample_rate)
rate = default_sample_rate
# y_trimmed, _ = librosa.effects.trim(y_no_gaps, top_db = 20)
# D = librosa.stft(y)
# S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
# S = librosa.feature.melspectrogram(y=y, sr=sr, n_mels=128*2,)
# S_db_mel = librosa.amplitude_to_db(np.abs(S), ref=np.max)
# Apply noise reduction (example using spectral subtraction)
# y_denoised = librosa.effects.preemphasis(y_trimmed)
# # Apply dynamic range compression
# y_compressed = librosa.effects.preemphasis(y_denoised)
# # Augmentation (example of time stretching)
# # y_stretched = librosa.effects.time_stretch(y_compressed, rate=1.2)
# # Silence Removal
# y_silence_removed, _ = librosa.effects.trim(y_compressed)
# # Equalization (example: apply high-pass filter)
# y_equalized = librosa.effects.preemphasis(y_silence_removed)
# # Define target sample rate
# target_sr = sr
# # Data Augmentation (example: pitch shifting)
# y_pitch_shifted = librosa.effects.pitch_shift(y_normalized, sr=target_sr, n_steps=2)
# Split audio into non-silent intervals
# Normalize the audio signal
# y_normalized = librosa.util.normalize(y_equalized)
# Feature Extraction (example: MFCCs)
# mfccs = librosa.feature.mfcc(y=y_normalized, sr=target_sr, n_mfcc=20)
# output_file_path = os.path.join(save_dir, f"{file_name_without_extension}.{extension}")
# Write the audio data to the output file in .wav format
# sf.write(path, y_normalized, target_sr)
return audio_data, rate
# smile = opensmile.Smile(
# feature_set=opensmile.FeatureSet.ComParE_2016,
# feature_level=opensmile.FeatureLevel.Functionals,
# )
# def extract_features(file_path):
# # # Load the audio file
# # y, sr = librosa.load(file_path, sr=None, dtype=np.float32)
# # # Extract MFCCs
# # mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=20)
# # mfccs_mean = pd.Series(mfccs.mean(axis=1), index=[f'mfcc_{i}' for i in range(mfccs.shape[0])])
# # # Extract Spectral Features
# # spectral_centroids = pd.Series(np.mean(librosa.feature.spectral_centroid(y=y, sr=sr)), index=['spectral_centroid'])
# # spectral_rolloff = pd.Series(np.mean(librosa.feature.spectral_rolloff(y=y, sr=sr)), index=['spectral_rolloff'])
# # spectral_flux = pd.Series(np.mean(librosa.onset.onset_strength(y=y, sr=sr)), index=['spectral_flux'])
# # spectral_contrast = pd.Series(np.mean(librosa.feature.spectral_contrast(S=np.abs(librosa.stft(y)), sr=sr), axis=1), index=[f'spectral_contrast_{i}' for i in range(librosa.feature.spectral_contrast(S=np.abs(librosa.stft(y)), sr=sr).shape[0])])
# # # Extract Pitch
# # pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
# # pitch_mean = pd.Series(np.mean(pitches[pitches != 0]), index=['pitch_mean']) # Average only non-zero values
# # # Extract Zero Crossings
# # zero_crossings = pd.Series(np.mean(librosa.feature.zero_crossing_rate(y)), index=['zero_crossings'])
# # # Combine all features into a single Series
# # features = pd.concat([mfccs_mean, spectral_centroids, spectral_rolloff, spectral_flux, spectral_contrast, pitch_mean, zero_crossings])
# features = smile.process_file(file_path)
# features_reshaped = features.squeeze()
# # Ensure it's now a 2D structure suitable for DataFrame
# print("New shape of features:", features_reshaped.shape)
# all_data = pd.DataFrame([features_reshaped])
# return all_data
def repair_mp3_with_ffmpeg_python(input_path, output_path):
"""Attempt to repair an MP3 file using FFmpeg."""
try:
# Define the audio stream with the necessary conversion parameters
audio = (
ffmpeg
.input(input_path, nostdin=None, y=None)
.output(output_path, vn=None, acodec='libmp3lame', ar='44100', ac='1', b='192k', af='aresample=44100')
.global_args('-nostdin', '-y') # Applying global arguments
.overwrite_output()
)
# Execute the FFmpeg command
ffmpeg.run(audio)
print(f"File repaired and saved as {output_path}")
except ffmpeg.Error as e:
print(f"Failed to repair file {input_path}: {str(e.stderr)}")
@app.post("/mlp")
async def handle_audio(file: UploadFile = File(...)):
try:
# Ensure that we are handling an MP3 file
if file.content_type == "audio/mpeg" or file.content_type == "audio/mp3":
file_extension = ".mp3"
elif file.content_type == "audio/wav":
file_extension = ".wav"
else:
raise HTTPException(status_code=400, detail="Invalid file type. Supported types: MP3, WAV.")
# Read the file's content
contents = await file.read()
temp_filename = f"app/{uuid4().hex}{file_extension}"
# Save file to a temporary file if needed or process directly from memory
with open(temp_filename, "wb") as f:
f.write(contents)
audio_data, sr = load(temp_filename, skip_seconds=5)
print("finished loading ", temp_filename)
# Preprocess data
audio_data, sr = preprocess_audio(audio_data, sr)
print("finished processing ", temp_filename)
# Extract features
features = extract_features(audio_data, sr)
# preprocess_audio(temp_filename, 'app')
# repair_mp3_with_ffmpeg_python(temp_filename, temp_filename)
# # Here you would add the feature extraction logic
# features = extract_features(temp_filename)
# print("Extracted Features:", features)
# features = pca.transform(features)
# features = np.array(features).reshape(1, -1)
features = features.reshape(1, -1)
features = scaler.transform(features)
# proceed with an inference
results = model.predict(features)
# decoded_predictions = [label_encoder.classes_[i] for i in results]
# # Decode the predictions using the label encoder
decoded_predictions = label_encoder.inverse_transform(results)
print('decoded', decoded_predictions[0])
# .tolist()
# Clean up the temporary file
os.remove(temp_filename)
print({"message": "File processed successfully", "sheikh": decoded_predictions[0]})
# Return a successful response with decoded predictions
return {"message": "File processed successfully", "sheikh": decoded_predictions[0]}
except Exception as e:
print(e)
# Handle possible exceptions
raise HTTPException(status_code=500, detail=str(e))
# if __name__ == "__main__":
# uvicorn.run("main:app", host="0.0.0.0", port=8080, reload=False)
|