File size: 3,878 Bytes
254bbe9
 
64e5a86
 
 
254bbe9
 
 
 
 
 
 
 
 
64e5a86
 
 
 
 
 
 
 
 
254bbe9
 
 
 
 
 
64e5a86
 
 
 
 
 
 
 
 
254bbe9
64e5a86
 
254bbe9
 
 
 
 
 
 
 
 
64e5a86
 
 
 
 
254bbe9
64e5a86
 
 
 
 
254bbe9
64e5a86
254bbe9
 
64e5a86
254bbe9
64e5a86
 
 
6ecfb5c
 
 
 
64e5a86
 
 
 
 
 
 
 
254bbe9
64e5a86
 
 
 
254bbe9
64e5a86
 
 
 
 
 
254bbe9
64e5a86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254bbe9
64e5a86
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from typing import Tuple

import gradio as gr


def deepmind_flops(
    n_layer: int,
    d_model: int,
    d_ff: int,
    d_attn: int,
    n_ctx: int,
    n_vocab: int,
    n_heads: int,
) -> int:
    embeddings = 2 * n_ctx * n_vocab * d_model
    attn_qkv = 2 * n_ctx * 3 * d_model * (d_attn * n_heads)
    attn_logits = 2 * n_ctx * n_ctx * (d_attn * n_heads)
    attn_softmax = 3 * n_heads * n_ctx * n_ctx
    attn_reduce = 2 * n_ctx * n_ctx * (d_attn * n_heads)
    attn_project = 2 * n_ctx * (d_attn * n_heads) * d_model
    ff = 2 * n_ctx * (d_model * d_ff + d_model * d_ff)
    logits = 2 * n_ctx * d_model * n_vocab

    params = (
        embeddings / n_ctx / 2,
        (n_layer * (attn_qkv + attn_project + ff)) / n_ctx / 2,
        logits / n_ctx / 2,
    )

    return (
        embeddings,
        attn_qkv * n_layer,
        attn_logits * n_layer,
        attn_softmax * n_layer,
        attn_reduce * n_layer,
        attn_project * n_layer,
        ff * n_layer,
        logits,
    ), params


def calculator(
    n_layer: int,
    d_model: int,
    n_heads: int,
    n_vocab: int,
    n_ctx: int,
    ff_ratio: int,
    incl_embed: bool,
) -> Tuple[int, int, int]:
    d_attn = d_model // n_heads
    if d_model % n_heads != 0:
        raise gr.Error("d_model must be divisible by n_heads")
    d_ff = d_model * ff_ratio

    flops_terms, params = deepmind_flops(
        n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads
    )

    if incl_embed:
        flops_per_sequence = sum(flops_terms)
        params = sum(params)
    else:
        flops_per_sequence = sum(flops_terms[1:3])
        params = sum(params[1:3])

    return params, flops_per_sequence, flops_per_sequence / n_ctx


with gr.Blocks() as iface:
    gr.Markdown("## Transformer FLOPs Calculator")
    gr.Markdown(
        "Calculate how many FLOPs a Transformer language model has using the method described in [DeepMind's Chinchilla scaling law paper](https://arxiv.org/abs/2203.15556) (see Appendix F)."
    )
    with gr.Row():
        with gr.Column():
            n_layer = gr.Number(label="Number of layers (n_layer)")
            d_model = gr.Number(label="Model dimensions (d_model)")
            n_heads = gr.Number(label="Number of attention heads per layer (n_heads)")
            n_vocab = gr.Number(label="Vocabulary size (n_vocab)")
            n_ctx = gr.Number(label="Sequence length")
            ff_ratio = gr.Number(value=4, label="Feedforward ratio")
            incl_embed = gr.Checkbox(value=True, label="Include embeddings")

            btn = gr.Button(value="Submit", variant="primary")

        with gr.Column():
            params = gr.Number(label="Model parameters")
            flops_per_sequence = gr.Number(label="FLOPs per sequence")
            flops_per_token = gr.Number(label="FLOPs per token")

    btn.click(
        calculator,
        inputs=[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
        outputs=[params, flops_per_sequence, flops_per_token],
    )

    gr.Markdown("### GPT-3 model family examples")
    gr.Markdown(
        "In order are the 125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B, and 175B parameter variants."
    )
    gr.Examples(
        [
            [12, 768, 12, 50257, 4096, 4, True],
            [24, 1024, 16, 50257, 4096, 4, True],
            [24, 2048, 32, 50257, 4096, 4, True],
            [32, 2560, 32, 50257, 4096, 4, True],
            [32, 4096, 32, 50257, 4096, 4, True],
            [40, 5120, 40, 50257, 4096, 4, True],
            [48, 7168, 56, 50257, 4096, 4, True],
            [64, 9216, 72, 50257, 4096, 4, True],
            [96, 12288, 96, 50257, 4096, 4, True],
        ],
        [n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
        [params, flops_per_sequence, flops_per_token],
        calculator,
        cache_examples=False,
    )

iface.launch()