adamcasson
commited on
Commit
·
64e5a86
1
Parent(s):
caf7cfa
add app
Browse files
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
def deepmind_flops(n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads):
|
5 |
+
embeddings = 2 * n_ctx * n_vocab * d_model
|
6 |
+
attn_qkv = 2 * n_ctx * 3 * d_model * (d_attn * n_heads)
|
7 |
+
attn_logits = 2 * n_ctx * n_ctx * (d_attn * n_heads)
|
8 |
+
attn_softmax = 3 * n_heads * n_ctx * n_ctx
|
9 |
+
attn_reduce = 2 * n_ctx * n_ctx * (d_attn * n_heads)
|
10 |
+
attn_project = 2 * n_ctx * (d_attn * n_heads) * d_model
|
11 |
+
ff = 2 * n_ctx * (d_model * d_ff + d_model * d_ff)
|
12 |
+
logits = 2 * n_ctx * d_model * n_vocab
|
13 |
+
|
14 |
+
return (
|
15 |
+
embeddings,
|
16 |
+
attn_qkv * n_layer,
|
17 |
+
attn_logits * n_layer,
|
18 |
+
attn_softmax * n_layer,
|
19 |
+
attn_reduce * n_layer,
|
20 |
+
attn_project * n_layer,
|
21 |
+
ff * n_layer,
|
22 |
+
logits,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
def calculator(n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed):
|
27 |
+
d_attn = d_model // n_heads
|
28 |
+
if d_model % n_heads != 0:
|
29 |
+
raise gr.Error("d_model must be divisible by n_heads")
|
30 |
+
d_ff = d_model * ff_ratio
|
31 |
+
|
32 |
+
flops_terms = deepmind_flops(
|
33 |
+
n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads
|
34 |
+
)
|
35 |
+
|
36 |
+
if incl_embed:
|
37 |
+
flops_per_sequence = sum(flops_terms)
|
38 |
+
else:
|
39 |
+
flops_per_sequence = sum(flops_terms[1:-1])
|
40 |
+
|
41 |
+
return flops_per_sequence, flops_per_sequence / n_ctx
|
42 |
+
|
43 |
+
|
44 |
+
with gr.Blocks() as iface:
|
45 |
+
with gr.Row():
|
46 |
+
with gr.Column():
|
47 |
+
n_layer = gr.Number(label="Number of layers (n_layer)")
|
48 |
+
d_model = gr.Number(label="Model dimensions (d_model)")
|
49 |
+
n_heads = gr.Number(label="Number of attention heads per layer (n_heads)")
|
50 |
+
n_vocab = gr.Number(label="Vocabulary size (n_vocab)")
|
51 |
+
n_ctx = gr.Number(label="Sequence length")
|
52 |
+
ff_ratio = gr.Number(value=4, label="Feedforward ratio")
|
53 |
+
incl_embed = gr.Checkbox(
|
54 |
+
value=True, label="Include embedding and logits FLOPs"
|
55 |
+
)
|
56 |
+
|
57 |
+
btn = gr.Button(value="Submit", variant="primary")
|
58 |
+
|
59 |
+
with gr.Column():
|
60 |
+
flops_per_sequence = gr.Number(label="FLOPs per sequence")
|
61 |
+
flops_per_token = gr.Number(label="FLOPs per token")
|
62 |
+
|
63 |
+
btn.click(
|
64 |
+
calculator,
|
65 |
+
inputs=[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
|
66 |
+
outputs=[flops_per_sequence, flops_per_token],
|
67 |
+
)
|
68 |
+
|
69 |
+
gr.Markdown("### GPT-3 model family examples")
|
70 |
+
gr.Markdown(
|
71 |
+
"In order are the 125M, 350M, 1.3B, 2.7B, 6.7B, 13B, 30B, 66B, and 175B parameter variants."
|
72 |
+
)
|
73 |
+
gr.Examples(
|
74 |
+
[
|
75 |
+
[12, 768, 12, 50257, 4096, 4, True],
|
76 |
+
[24, 1024, 16, 50257, 4096, 4, True],
|
77 |
+
[24, 2048, 32, 50257, 4096, 4, True],
|
78 |
+
[32, 2560, 32, 50257, 4096, 4, True],
|
79 |
+
[32, 4096, 32, 50257, 4096, 4, True],
|
80 |
+
[40, 5120, 40, 50257, 4096, 4, True],
|
81 |
+
[48, 7168, 56, 50257, 4096, 4, True],
|
82 |
+
[64, 9216, 72, 50257, 4096, 4, True],
|
83 |
+
[96, 12288, 96, 50257, 4096, 4, True],
|
84 |
+
],
|
85 |
+
[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
|
86 |
+
[flops_per_sequence, flops_per_token],
|
87 |
+
calculator,
|
88 |
+
cache_examples=False,
|
89 |
+
)
|
90 |
+
|
91 |
+
iface.launch()
|