Commit
·
254bbe9
1
Parent(s):
6ecfb5c
add param count
Browse files
app.py
CHANGED
|
@@ -1,7 +1,17 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
|
| 3 |
|
| 4 |
-
def deepmind_flops(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
embeddings = 2 * n_ctx * n_vocab * d_model
|
| 6 |
attn_qkv = 2 * n_ctx * 3 * d_model * (d_attn * n_heads)
|
| 7 |
attn_logits = 2 * n_ctx * n_ctx * (d_attn * n_heads)
|
|
@@ -11,6 +21,12 @@ def deepmind_flops(n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads):
|
|
| 11 |
ff = 2 * n_ctx * (d_model * d_ff + d_model * d_ff)
|
| 12 |
logits = 2 * n_ctx * d_model * n_vocab
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
return (
|
| 15 |
embeddings,
|
| 16 |
attn_qkv * n_layer,
|
|
@@ -20,25 +36,35 @@ def deepmind_flops(n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads):
|
|
| 20 |
attn_project * n_layer,
|
| 21 |
ff * n_layer,
|
| 22 |
logits,
|
| 23 |
-
)
|
| 24 |
|
| 25 |
|
| 26 |
-
def calculator(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
d_attn = d_model // n_heads
|
| 28 |
if d_model % n_heads != 0:
|
| 29 |
raise gr.Error("d_model must be divisible by n_heads")
|
| 30 |
d_ff = d_model * ff_ratio
|
| 31 |
|
| 32 |
-
flops_terms = deepmind_flops(
|
| 33 |
n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads
|
| 34 |
)
|
| 35 |
|
| 36 |
if incl_embed:
|
| 37 |
flops_per_sequence = sum(flops_terms)
|
|
|
|
| 38 |
else:
|
| 39 |
-
flops_per_sequence = sum(flops_terms[1
|
|
|
|
| 40 |
|
| 41 |
-
return flops_per_sequence, flops_per_sequence / n_ctx
|
| 42 |
|
| 43 |
|
| 44 |
with gr.Blocks() as iface:
|
|
@@ -54,20 +80,19 @@ with gr.Blocks() as iface:
|
|
| 54 |
n_vocab = gr.Number(label="Vocabulary size (n_vocab)")
|
| 55 |
n_ctx = gr.Number(label="Sequence length")
|
| 56 |
ff_ratio = gr.Number(value=4, label="Feedforward ratio")
|
| 57 |
-
incl_embed = gr.Checkbox(
|
| 58 |
-
value=True, label="Include embedding and logits FLOPs"
|
| 59 |
-
)
|
| 60 |
|
| 61 |
btn = gr.Button(value="Submit", variant="primary")
|
| 62 |
|
| 63 |
with gr.Column():
|
|
|
|
| 64 |
flops_per_sequence = gr.Number(label="FLOPs per sequence")
|
| 65 |
flops_per_token = gr.Number(label="FLOPs per token")
|
| 66 |
|
| 67 |
btn.click(
|
| 68 |
calculator,
|
| 69 |
inputs=[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
|
| 70 |
-
outputs=[flops_per_sequence, flops_per_token],
|
| 71 |
)
|
| 72 |
|
| 73 |
gr.Markdown("### GPT-3 model family examples")
|
|
@@ -87,7 +112,7 @@ with gr.Blocks() as iface:
|
|
| 87 |
[96, 12288, 96, 50257, 4096, 4, True],
|
| 88 |
],
|
| 89 |
[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
|
| 90 |
-
[flops_per_sequence, flops_per_token],
|
| 91 |
calculator,
|
| 92 |
cache_examples=False,
|
| 93 |
)
|
|
|
|
| 1 |
+
from typing import Tuple
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
|
| 5 |
|
| 6 |
+
def deepmind_flops(
|
| 7 |
+
n_layer: int,
|
| 8 |
+
d_model: int,
|
| 9 |
+
d_ff: int,
|
| 10 |
+
d_attn: int,
|
| 11 |
+
n_ctx: int,
|
| 12 |
+
n_vocab: int,
|
| 13 |
+
n_heads: int,
|
| 14 |
+
) -> int:
|
| 15 |
embeddings = 2 * n_ctx * n_vocab * d_model
|
| 16 |
attn_qkv = 2 * n_ctx * 3 * d_model * (d_attn * n_heads)
|
| 17 |
attn_logits = 2 * n_ctx * n_ctx * (d_attn * n_heads)
|
|
|
|
| 21 |
ff = 2 * n_ctx * (d_model * d_ff + d_model * d_ff)
|
| 22 |
logits = 2 * n_ctx * d_model * n_vocab
|
| 23 |
|
| 24 |
+
params = (
|
| 25 |
+
embeddings / n_ctx / 2,
|
| 26 |
+
(n_layer * (attn_qkv + attn_project + ff)) / n_ctx / 2,
|
| 27 |
+
logits / n_ctx / 2,
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
return (
|
| 31 |
embeddings,
|
| 32 |
attn_qkv * n_layer,
|
|
|
|
| 36 |
attn_project * n_layer,
|
| 37 |
ff * n_layer,
|
| 38 |
logits,
|
| 39 |
+
), params
|
| 40 |
|
| 41 |
|
| 42 |
+
def calculator(
|
| 43 |
+
n_layer: int,
|
| 44 |
+
d_model: int,
|
| 45 |
+
n_heads: int,
|
| 46 |
+
n_vocab: int,
|
| 47 |
+
n_ctx: int,
|
| 48 |
+
ff_ratio: int,
|
| 49 |
+
incl_embed: bool,
|
| 50 |
+
) -> Tuple[int, int, int]:
|
| 51 |
d_attn = d_model // n_heads
|
| 52 |
if d_model % n_heads != 0:
|
| 53 |
raise gr.Error("d_model must be divisible by n_heads")
|
| 54 |
d_ff = d_model * ff_ratio
|
| 55 |
|
| 56 |
+
flops_terms, params = deepmind_flops(
|
| 57 |
n_layer, d_model, d_ff, d_attn, n_ctx, n_vocab, n_heads
|
| 58 |
)
|
| 59 |
|
| 60 |
if incl_embed:
|
| 61 |
flops_per_sequence = sum(flops_terms)
|
| 62 |
+
params = sum(params)
|
| 63 |
else:
|
| 64 |
+
flops_per_sequence = sum(flops_terms[1:3])
|
| 65 |
+
params = sum(params[1:3])
|
| 66 |
|
| 67 |
+
return params, flops_per_sequence, flops_per_sequence / n_ctx
|
| 68 |
|
| 69 |
|
| 70 |
with gr.Blocks() as iface:
|
|
|
|
| 80 |
n_vocab = gr.Number(label="Vocabulary size (n_vocab)")
|
| 81 |
n_ctx = gr.Number(label="Sequence length")
|
| 82 |
ff_ratio = gr.Number(value=4, label="Feedforward ratio")
|
| 83 |
+
incl_embed = gr.Checkbox(value=True, label="Include embeddings")
|
|
|
|
|
|
|
| 84 |
|
| 85 |
btn = gr.Button(value="Submit", variant="primary")
|
| 86 |
|
| 87 |
with gr.Column():
|
| 88 |
+
params = gr.Number(label="Model parameters")
|
| 89 |
flops_per_sequence = gr.Number(label="FLOPs per sequence")
|
| 90 |
flops_per_token = gr.Number(label="FLOPs per token")
|
| 91 |
|
| 92 |
btn.click(
|
| 93 |
calculator,
|
| 94 |
inputs=[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
|
| 95 |
+
outputs=[params, flops_per_sequence, flops_per_token],
|
| 96 |
)
|
| 97 |
|
| 98 |
gr.Markdown("### GPT-3 model family examples")
|
|
|
|
| 112 |
[96, 12288, 96, 50257, 4096, 4, True],
|
| 113 |
],
|
| 114 |
[n_layer, d_model, n_heads, n_vocab, n_ctx, ff_ratio, incl_embed],
|
| 115 |
+
[params, flops_per_sequence, flops_per_token],
|
| 116 |
calculator,
|
| 117 |
cache_examples=False,
|
| 118 |
)
|