Spaces:
Sleeping
Sleeping
import os | |
import numpy as np | |
from tensorflow.keras.models import Sequential | |
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense | |
from tensorflow.keras.preprocessing.image import ImageDataGenerator | |
from tensorflow.keras.optimizers import Adam | |
# Set paths to the dataset (adjust paths based on your directory structure) | |
train_dir = './data/train' | |
validation_dir = './data/validation' | |
# Define the CNN model | |
def create_cnn_model(input_shape=(224, 224, 3)): | |
model = Sequential() | |
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) | |
model.add(MaxPooling2D((2, 2))) | |
model.add(Conv2D(64, (3, 3), activation='relu')) | |
model.add(MaxPooling2D((2, 2))) | |
model.add(Conv2D(128, (3, 3), activation='relu')) | |
model.add(MaxPooling2D((2, 2))) | |
model.add(Flatten()) | |
model.add(Dense(128, activation='relu')) | |
model.add(Dense(1, activation='sigmoid')) # Binary classification (Normal vs Abnormal) | |
model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy']) | |
return model | |
# Create the CNN model | |
model = create_cnn_model() | |
# ImageDataGenerator for training and validation | |
train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=40, width_shift_range=0.2, | |
height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, | |
horizontal_flip=True, fill_mode='nearest') | |
validation_datagen = ImageDataGenerator(rescale=1./255) | |
# Flow training and validation data from directories | |
train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224), | |
batch_size=32, class_mode='binary') | |
validation_generator = validation_datagen.flow_from_directory(validation_dir, target_size=(224, 224), | |
batch_size=32, class_mode='binary') | |
# Train the model | |
history = model.fit(train_generator, epochs=10, validation_data=validation_generator) | |
# Save the trained model | |
model.save('classification_model.h5') | |