import os import numpy as np from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow.keras.optimizers import Adam # Set paths to the dataset (adjust paths based on your directory structure) train_dir = './data/train' validation_dir = './data/validation' # Define the CNN model def create_cnn_model(input_shape=(224, 224, 3)): model = Sequential() model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape)) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Conv2D(128, (3, 3), activation='relu')) model.add(MaxPooling2D((2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu')) model.add(Dense(1, activation='sigmoid')) # Binary classification (Normal vs Abnormal) model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy']) return model # Create the CNN model model = create_cnn_model() # ImageDataGenerator for training and validation train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=40, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.2, zoom_range=0.2, horizontal_flip=True, fill_mode='nearest') validation_datagen = ImageDataGenerator(rescale=1./255) # Flow training and validation data from directories train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224), batch_size=32, class_mode='binary') validation_generator = validation_datagen.flow_from_directory(validation_dir, target_size=(224, 224), batch_size=32, class_mode='binary') # Train the model history = model.fit(train_generator, epochs=10, validation_data=validation_generator) # Save the trained model model.save('classification_model.h5')