abuzarAli commited on
Commit
ed9eb17
·
verified ·
1 Parent(s): 8066bd0

Create train_model.py

Browse files
Files changed (1) hide show
  1. train_model.py +52 -0
train_model.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ from tensorflow.keras.models import Sequential
4
+ from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense
5
+ from tensorflow.keras.preprocessing.image import ImageDataGenerator
6
+ from tensorflow.keras.optimizers import Adam
7
+
8
+ # Set paths to the dataset (adjust paths based on your directory structure)
9
+ train_dir = './data/train'
10
+ validation_dir = './data/validation'
11
+
12
+ # Define the CNN model
13
+ def create_cnn_model(input_shape=(224, 224, 3)):
14
+ model = Sequential()
15
+ model.add(Conv2D(32, (3, 3), activation='relu', input_shape=input_shape))
16
+ model.add(MaxPooling2D((2, 2)))
17
+
18
+ model.add(Conv2D(64, (3, 3), activation='relu'))
19
+ model.add(MaxPooling2D((2, 2)))
20
+
21
+ model.add(Conv2D(128, (3, 3), activation='relu'))
22
+ model.add(MaxPooling2D((2, 2)))
23
+
24
+ model.add(Flatten())
25
+ model.add(Dense(128, activation='relu'))
26
+ model.add(Dense(1, activation='sigmoid')) # Binary classification (Normal vs Abnormal)
27
+
28
+ model.compile(optimizer=Adam(), loss='binary_crossentropy', metrics=['accuracy'])
29
+ return model
30
+
31
+ # Create the CNN model
32
+ model = create_cnn_model()
33
+
34
+ # ImageDataGenerator for training and validation
35
+ train_datagen = ImageDataGenerator(rescale=1./255, rotation_range=40, width_shift_range=0.2,
36
+ height_shift_range=0.2, shear_range=0.2, zoom_range=0.2,
37
+ horizontal_flip=True, fill_mode='nearest')
38
+
39
+ validation_datagen = ImageDataGenerator(rescale=1./255)
40
+
41
+ # Flow training and validation data from directories
42
+ train_generator = train_datagen.flow_from_directory(train_dir, target_size=(224, 224),
43
+ batch_size=32, class_mode='binary')
44
+
45
+ validation_generator = validation_datagen.flow_from_directory(validation_dir, target_size=(224, 224),
46
+ batch_size=32, class_mode='binary')
47
+
48
+ # Train the model
49
+ history = model.fit(train_generator, epochs=10, validation_data=validation_generator)
50
+
51
+ # Save the trained model
52
+ model.save('classification_model.h5')