File size: 4,995 Bytes
e86b313
 
 
 
 
0b2a6bb
e86b313
 
 
 
0b2a6bb
 
e86b313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b2a6bb
e86b313
 
0b2a6bb
74ccfd8
198ce44
3c90bf7
e86b313
9b37288
12d314d
 
 
 
 
 
9b37288
12d314d
 
9b37288
e86b313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import openai
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
import joblib
import gradio as gr
import google.generativeai as gai

# Load the trained classifier model
model = joblib.load('model_pkl')


gai.configure(api_key='AIzaSyAwP55Zlq9KqUBjHWWUjfzHcP4Sr8DVMuk')

# Function to simulate the medical assistant's interaction
def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius, 
                                  headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough):
    try:
        # Prepare symptom responses
        symptom_responses = {
            "Headache": headache,
            "Muscle Pain": muscle_pain,
            "Sore Throat": sore_throat,
            "Nausea and Vomiting": nausea_vomiting,
            "Diarrhea": diarrhea,
            "Joint Pains": joint_pains,
            "Dry Cough or Coughing Blood": cough
        }

        # Combine responses into a single text input
        patient_responses = ', '.join([f"{symptom}: {response}" for symptom, response in symptom_responses.items()])

        # Compile sensor data for the classifier
        features = pd.DataFrame({
            'Pulse_Rate': [pulse_rate],
            'Blood_Pressure_Systolic': [blood_pressure_systolic],
            'Blood_Pressure_Diastolic': [blood_pressure_diastolic],
            'Temperature_Celsius': [temperature_celsius]
        })

        # Make a prediction using the trained classifier
        prediction = model.predict(features)[0]

        # Use OpenAI to make a combined inference
        response_text = f"""
        A patient has the following sensor readings:
        - Pulse Rate: {pulse_rate} bpm
        - Systolic Blood Pressure: {blood_pressure_systolic} mmHg
        - Diastolic Blood Pressure: {blood_pressure_diastolic} mmHg
        - Temperature: {temperature_celsius}°C

        The patient reported the following symptoms: {patient_responses}.
        
        Based on these symptoms, what is the likelihood of Lassa fever? Provide additional follow-up questions if necessary.
        """

        response = gai.chat(
            model="models/chat-bison-001",  
            messages=[{"content": response_text}],
            #max_output_tokens=150
        )
        #assistant_message = response.last['content'].strip()
        if hasattr(response, 'candidates'):
            candidates = response.candidates
            if len(candidates) > 0 and hasattr(candidates[0], 'content'):
                assistant_message = candidates[0].content.strip()
            else:
                assistant_message = "Error: No valid response from the model."
        else:
            assistant_message = "Error: Response object does not have 'candidates' attribute."

            
        # Combine the assistant's message with the model's prediction
        if prediction == 1:
            model_inference = "Based on the sensor readings, the classifier suggests a high likelihood of Lassa fever."
        else:
            model_inference = "Based on the sensor readings, the classifier suggests a low likelihood of Lassa fever."

        final_inference = f"{assistant_message}\n\n{model_inference}"
        
        return final_inference

    except Exception as e:
        return f"An error occurred: {str(e)}"

# Gradio interface for interaction
def gradio_interface(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius, 
                     headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough):
    return medical_assistant_interaction(
        pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius, 
        headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough
    )

# Create a Gradio interface
interface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Number(label="Pulse Rate (bpm)"),
        gr.Number(label="Systolic Blood Pressure (mmHg)"),
        gr.Number(label="Diastolic Blood Pressure (mmHg)"),
        gr.Number(label="Temperature (Celsius)"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing headaches?"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing muscle pain?"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing a sore throat?"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing nausea and vomiting?"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing diarrhea?"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing joint pains?"),
        gr.Radio(choices=["Yes", "No"], label="Are you experiencing a dry cough or coughing blood?")
    ],
    outputs="text",
    title="Lassa Fever Medical Assistant",
    description="This assistant uses sensor data and patient symptom responses to infer the likelihood of Lassa fever."
)

# Launch the Gradio interface
interface.launch()