Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,12 +3,13 @@ import pandas as pd
|
|
3 |
from sklearn.ensemble import RandomForestClassifier
|
4 |
import joblib
|
5 |
import gradio as gr
|
|
|
6 |
|
7 |
# Load the trained classifier model
|
8 |
model = joblib.load('model_pkl')
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
# Function to simulate the medical assistant's interaction
|
14 |
def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
|
@@ -49,16 +50,15 @@ def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pre
|
|
49 |
|
50 |
The patient reported the following symptoms: {patient_responses}.
|
51 |
|
52 |
-
Based on these
|
53 |
"""
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
max_tokens=150
|
60 |
)
|
61 |
-
assistant_message = response['
|
62 |
|
63 |
# Combine the assistant's message with the model's prediction
|
64 |
if prediction == 1:
|
|
|
3 |
from sklearn.ensemble import RandomForestClassifier
|
4 |
import joblib
|
5 |
import gradio as gr
|
6 |
+
import google.generativeai as gai
|
7 |
|
8 |
# Load the trained classifier model
|
9 |
model = joblib.load('model_pkl')
|
10 |
|
11 |
+
|
12 |
+
gai.configure(api_key='AIzaSyAwP55Zlq9KqUBjHWWUjfzHcP4Sr8DVMuk')
|
13 |
|
14 |
# Function to simulate the medical assistant's interaction
|
15 |
def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
|
|
|
50 |
|
51 |
The patient reported the following symptoms: {patient_responses}.
|
52 |
|
53 |
+
Based on these symptoms, what is the likelihood of Lassa fever? Provide additional follow-up questions if necessary.
|
54 |
"""
|
55 |
|
56 |
+
response = gai.chat(
|
57 |
+
model="chat-bison-001",
|
58 |
+
messages=[{"role": "user", "content": response_text}],
|
59 |
+
max_output_tokens=150
|
|
|
60 |
)
|
61 |
+
assistant_message = response.last['content'].strip()
|
62 |
|
63 |
# Combine the assistant's message with the model's prediction
|
64 |
if prediction == 1:
|