Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import openai
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.ensemble import RandomForestClassifier
|
4 |
+
import joblib
|
5 |
+
import gradio as gr
|
6 |
+
|
7 |
+
# Load the trained classifier model
|
8 |
+
model = joblib.load('model_pkl')
|
9 |
+
|
10 |
+
# OpenAI API key (assumed to be set in Hugging Face environment)
|
11 |
+
openai.api_key = 'sk-jtt46VTrnym9B57gkkS_QAJ2E0RYodrEDHodAgliVqT3BlbkFJKooyGzBYbWkWkIt4-MG6ASNt4pMguQs2Mob6kpkaEA'
|
12 |
+
|
13 |
+
# Function to simulate the medical assistant's interaction
|
14 |
+
def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
|
15 |
+
headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough):
|
16 |
+
try:
|
17 |
+
# Prepare symptom responses
|
18 |
+
symptom_responses = {
|
19 |
+
"Headache": headache,
|
20 |
+
"Muscle Pain": muscle_pain,
|
21 |
+
"Sore Throat": sore_throat,
|
22 |
+
"Nausea and Vomiting": nausea_vomiting,
|
23 |
+
"Diarrhea": diarrhea,
|
24 |
+
"Joint Pains": joint_pains,
|
25 |
+
"Dry Cough or Coughing Blood": cough
|
26 |
+
}
|
27 |
+
|
28 |
+
# Combine responses into a single text input
|
29 |
+
patient_responses = ', '.join([f"{symptom}: {response}" for symptom, response in symptom_responses.items()])
|
30 |
+
|
31 |
+
# Compile sensor data for the classifier
|
32 |
+
features = pd.DataFrame({
|
33 |
+
'Pulse_Rate': [pulse_rate],
|
34 |
+
'Blood_Pressure_Systolic': [blood_pressure_systolic],
|
35 |
+
'Blood_Pressure_Diastolic': [blood_pressure_diastolic],
|
36 |
+
'Temperature_Celsius': [temperature_celsius]
|
37 |
+
})
|
38 |
+
|
39 |
+
# Make a prediction using the trained classifier
|
40 |
+
prediction = model.predict(features)[0]
|
41 |
+
|
42 |
+
# Use OpenAI to make a combined inference
|
43 |
+
response_text = f"""
|
44 |
+
A patient has the following sensor readings:
|
45 |
+
- Pulse Rate: {pulse_rate} bpm
|
46 |
+
- Systolic Blood Pressure: {blood_pressure_systolic} mmHg
|
47 |
+
- Diastolic Blood Pressure: {blood_pressure_diastolic} mmHg
|
48 |
+
- Temperature: {temperature_celsius}°C
|
49 |
+
|
50 |
+
The patient reported the following symptoms: {patient_responses}.
|
51 |
+
|
52 |
+
Based on these readings and symptoms, what is the likelihood of Lassa fever? Provide additional follow-up questions if necessary.
|
53 |
+
"""
|
54 |
+
|
55 |
+
# Call OpenAI's API for a response
|
56 |
+
response = openai.Completion.create(
|
57 |
+
engine="text-davinci-003",
|
58 |
+
prompt=response_text,
|
59 |
+
max_tokens=150
|
60 |
+
)
|
61 |
+
assistant_message = response['choices'][0]['text'].strip()
|
62 |
+
|
63 |
+
# Combine the assistant's message with the model's prediction
|
64 |
+
if prediction == 1:
|
65 |
+
model_inference = "Based on the sensor readings, the classifier suggests a high likelihood of Lassa fever."
|
66 |
+
else:
|
67 |
+
model_inference = "Based on the sensor readings, the classifier suggests a low likelihood of Lassa fever."
|
68 |
+
|
69 |
+
final_inference = f"{assistant_message}\n\n{model_inference}"
|
70 |
+
|
71 |
+
return final_inference
|
72 |
+
|
73 |
+
except Exception as e:
|
74 |
+
return f"An error occurred: {str(e)}"
|
75 |
+
|
76 |
+
# Gradio interface for interaction
|
77 |
+
def gradio_interface(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
|
78 |
+
headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough):
|
79 |
+
return medical_assistant_interaction(
|
80 |
+
pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
|
81 |
+
headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough
|
82 |
+
)
|
83 |
+
|
84 |
+
# Create a Gradio interface
|
85 |
+
interface = gr.Interface(
|
86 |
+
fn=gradio_interface,
|
87 |
+
inputs=[
|
88 |
+
gr.Number(label="Pulse Rate (bpm)"),
|
89 |
+
gr.Number(label="Systolic Blood Pressure (mmHg)"),
|
90 |
+
gr.Number(label="Diastolic Blood Pressure (mmHg)"),
|
91 |
+
gr.Number(label="Temperature (Celsius)"),
|
92 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing headaches?"),
|
93 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing muscle pain?"),
|
94 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing a sore throat?"),
|
95 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing nausea and vomiting?"),
|
96 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing diarrhea?"),
|
97 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing joint pains?"),
|
98 |
+
gr.Radio(choices=["Yes", "No"], label="Are you experiencing a dry cough or coughing blood?")
|
99 |
+
],
|
100 |
+
outputs="text",
|
101 |
+
title="Lassa Fever Medical Assistant",
|
102 |
+
description="This assistant uses sensor data and patient symptom responses to infer the likelihood of Lassa fever."
|
103 |
+
)
|
104 |
+
|
105 |
+
# Launch the Gradio interface
|
106 |
+
interface.launch()
|