aaronemmanuel commited on
Commit
e86b313
·
verified ·
1 Parent(s): 0074105

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +106 -0
app.py ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ import pandas as pd
3
+ from sklearn.ensemble import RandomForestClassifier
4
+ import joblib
5
+ import gradio as gr
6
+
7
+ # Load the trained classifier model
8
+ model = joblib.load('model_pkl')
9
+
10
+ # OpenAI API key (assumed to be set in Hugging Face environment)
11
+ openai.api_key = 'sk-jtt46VTrnym9B57gkkS_QAJ2E0RYodrEDHodAgliVqT3BlbkFJKooyGzBYbWkWkIt4-MG6ASNt4pMguQs2Mob6kpkaEA'
12
+
13
+ # Function to simulate the medical assistant's interaction
14
+ def medical_assistant_interaction(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
15
+ headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough):
16
+ try:
17
+ # Prepare symptom responses
18
+ symptom_responses = {
19
+ "Headache": headache,
20
+ "Muscle Pain": muscle_pain,
21
+ "Sore Throat": sore_throat,
22
+ "Nausea and Vomiting": nausea_vomiting,
23
+ "Diarrhea": diarrhea,
24
+ "Joint Pains": joint_pains,
25
+ "Dry Cough or Coughing Blood": cough
26
+ }
27
+
28
+ # Combine responses into a single text input
29
+ patient_responses = ', '.join([f"{symptom}: {response}" for symptom, response in symptom_responses.items()])
30
+
31
+ # Compile sensor data for the classifier
32
+ features = pd.DataFrame({
33
+ 'Pulse_Rate': [pulse_rate],
34
+ 'Blood_Pressure_Systolic': [blood_pressure_systolic],
35
+ 'Blood_Pressure_Diastolic': [blood_pressure_diastolic],
36
+ 'Temperature_Celsius': [temperature_celsius]
37
+ })
38
+
39
+ # Make a prediction using the trained classifier
40
+ prediction = model.predict(features)[0]
41
+
42
+ # Use OpenAI to make a combined inference
43
+ response_text = f"""
44
+ A patient has the following sensor readings:
45
+ - Pulse Rate: {pulse_rate} bpm
46
+ - Systolic Blood Pressure: {blood_pressure_systolic} mmHg
47
+ - Diastolic Blood Pressure: {blood_pressure_diastolic} mmHg
48
+ - Temperature: {temperature_celsius}°C
49
+
50
+ The patient reported the following symptoms: {patient_responses}.
51
+
52
+ Based on these readings and symptoms, what is the likelihood of Lassa fever? Provide additional follow-up questions if necessary.
53
+ """
54
+
55
+ # Call OpenAI's API for a response
56
+ response = openai.Completion.create(
57
+ engine="text-davinci-003",
58
+ prompt=response_text,
59
+ max_tokens=150
60
+ )
61
+ assistant_message = response['choices'][0]['text'].strip()
62
+
63
+ # Combine the assistant's message with the model's prediction
64
+ if prediction == 1:
65
+ model_inference = "Based on the sensor readings, the classifier suggests a high likelihood of Lassa fever."
66
+ else:
67
+ model_inference = "Based on the sensor readings, the classifier suggests a low likelihood of Lassa fever."
68
+
69
+ final_inference = f"{assistant_message}\n\n{model_inference}"
70
+
71
+ return final_inference
72
+
73
+ except Exception as e:
74
+ return f"An error occurred: {str(e)}"
75
+
76
+ # Gradio interface for interaction
77
+ def gradio_interface(pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
78
+ headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough):
79
+ return medical_assistant_interaction(
80
+ pulse_rate, blood_pressure_systolic, blood_pressure_diastolic, temperature_celsius,
81
+ headache, muscle_pain, sore_throat, nausea_vomiting, diarrhea, joint_pains, cough
82
+ )
83
+
84
+ # Create a Gradio interface
85
+ interface = gr.Interface(
86
+ fn=gradio_interface,
87
+ inputs=[
88
+ gr.Number(label="Pulse Rate (bpm)"),
89
+ gr.Number(label="Systolic Blood Pressure (mmHg)"),
90
+ gr.Number(label="Diastolic Blood Pressure (mmHg)"),
91
+ gr.Number(label="Temperature (Celsius)"),
92
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing headaches?"),
93
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing muscle pain?"),
94
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing a sore throat?"),
95
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing nausea and vomiting?"),
96
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing diarrhea?"),
97
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing joint pains?"),
98
+ gr.Radio(choices=["Yes", "No"], label="Are you experiencing a dry cough or coughing blood?")
99
+ ],
100
+ outputs="text",
101
+ title="Lassa Fever Medical Assistant",
102
+ description="This assistant uses sensor data and patient symptom responses to infer the likelihood of Lassa fever."
103
+ )
104
+
105
+ # Launch the Gradio interface
106
+ interface.launch()