File size: 3,308 Bytes
7c5d1d0
7a63bb7
a719e13
2750f6c
 
 
a178285
2750f6c
a178285
de496ae
7c5d1d0
a178285
2750f6c
a178285
 
 
 
 
 
 
7a63bb7
2750f6c
 
de496ae
2750f6c
de496ae
3e47c80
de496ae
a178285
 
a719e13
 
 
7a63bb7
2ab8b05
 
 
a719e13
 
 
 
2d5fce6
de496ae
a719e13
 
 
de496ae
 
2d5fce6
a719e13
 
 
a178285
 
 
7a63bb7
a178285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2750f6c
a178285
7c5d1d0
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import gradio as gr
import numpy as np
import pandas as pd
import joblib
import os
import warnings
from huggingface_hub import hf_hub_download

# Suppress warnings
warnings.filterwarnings("ignore")

# Load ensemble model from Hugging Face Hub
def load_model():
    model_path = hf_hub_download(
        repo_id="Zeyadd-Mostaffa/final_ensemble_model",
        filename="final_ensemble_model.pkl"
    )
    model = joblib.load(model_path)
    print("βœ… Ensemble model loaded successfully.")
    return model

model = load_model()

# Prediction function
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
                            average_monthly_hours, time_spend_company,
                            work_accident, promotion_last_5years, salary, department, threshold=0.5):

    departments = ['RandD', 'accounting', 'hr', 'management', 'marketing',
                   'product_mng', 'sales', 'support', 'technical']
    department_features = {f"department_{dept}": 0 for dept in departments}
    if department in departments:
        department_features[f"department_{department}"] = 1

    satisfaction_evaluation = satisfaction_level * last_evaluation
    work_balance = average_monthly_hours / number_project

    input_data = {
        "satisfaction_level": [satisfaction_level],
        "last_evaluation": [last_evaluation],
        "number_project": [number_project],
        "average_monthly_hours": [average_monthly_hours],
        "time_spend_company": [time_spend_company],
        "Work_accident": [work_accident],
        "promotion_last_5years": [promotion_last_5years],
        "salary": [salary],
        "satisfaction_evaluation": [satisfaction_evaluation],
        "work_balance": [work_balance],
        **department_features
    }

    input_df = pd.DataFrame(input_data)
    prediction_prob = model.predict_proba(input_df)[0][1]
    result = "βœ… Employee is likely to quit." if prediction_prob >= threshold else "βœ… Employee is likely to stay."
    return f"{result} (Probability: {prediction_prob:.2%})"

# Launch Gradio UI
def gradio_interface():
    gr.Interface(
        fn=predict_employee_status,
        inputs=[
            gr.Number(label="Satisfaction Level (0.0 - 1.0)"),
            gr.Number(label="Last Evaluation (0.0 - 1.0)"),
            gr.Number(label="Number of Projects (1 - 10)"),
            gr.Number(label="Average Monthly Hours (80 - 320)"),
            gr.Number(label="Time Spend at Company (Years)"),
            gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"),
            gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
            gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"),
            gr.Dropdown(['RandD', 'accounting', 'hr', 'management', 'marketing',
                         'product_mng', 'sales', 'support', 'technical'], label="Department"),
            gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold")
        ],
        outputs="text",
        title="Employee Retention Prediction System (Ensemble from Hugging Face Hub)",
        description="Predict whether an employee is likely to stay or quit based on their profile. Adjust the threshold for accurate predictions.",
        theme="dark"
    ).launch()

gradio_interface()