YixuanWang's picture
Update app.py
f3cf000 verified
raw
history blame
8.62 kB
import gradio as gr
import pandas as pd
import numpy as np
from textblob import TextBlob
from typing import List, Dict, Tuple
from dataclasses import dataclass
from pathlib import Path
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class RecommendationWeights:
visibility: float
sentiment: float
popularity: float
class TweetPreprocessor:
def __init__(self, data_path: Path):
self.data = self._load_data(data_path)
@staticmethod
def _load_data(data_path: Path) -> pd.DataFrame:
try:
data = pd.read_csv(data_path)
required_columns = {'Text', 'Retweets', 'Likes'}
if not required_columns.issubset(data.columns):
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
return data
except Exception as e:
logger.error(f"Error loading data: {e}")
raise
def calculate_metrics(self) -> pd.DataFrame:
self.data['Sentiment'] = self.data['Text'].apply(self._get_sentiment)
self.data['Popularity'] = self._normalize_popularity()
self.data['Credibility'] = np.random.choice([0, 1], size=len(self.data), p=[0.3, 0.7])
return self.data
@staticmethod
def _get_sentiment(text: str) -> float:
try:
return TextBlob(str(text)).sentiment.polarity
except Exception as e:
logger.warning(f"Error calculating sentiment: {e}")
return 0.0
def _normalize_popularity(self) -> pd.Series:
popularity = self.data['Retweets'] + self.data['Likes']
return (popularity - popularity.min()) / (popularity.max() - popularity.min() + 1e-6)
class RecommendationSystem:
def __init__(self, data_path: Path):
self.preprocessor = TweetPreprocessor(data_path)
self.data = None
self.setup_system()
def setup_system(self):
self.data = self.preprocessor.calculate_metrics()
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
if not self._validate_weights(weights):
return {"error": "Invalid weights provided"}
normalized_weights = self._normalize_weights(weights)
self.data['Final_Score'] = (
self.data['Credibility'] * normalized_weights.visibility +
self.data['Sentiment'] * normalized_weights.sentiment +
self.data['Popularity'] * normalized_weights.popularity
)
top_recommendations = (
self.data.nlargest(num_recommendations, 'Final_Score')
)
return self._format_recommendations(top_recommendations)
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
formatted_results = []
for _, row in recommendations.iterrows():
score_details = {
"总分": f"{row['Final_Score']:.2f}",
"可信度": "可信" if row['Credibility'] > 0 else "存疑",
"情感倾向": self._get_sentiment_label(row['Sentiment']),
"热度": f"{row['Popularity']:.2f}",
"互动数": f"点赞 {row['Likes']} · 转发 {row['Retweets']}"
}
formatted_results.append({
"text": row['Text'],
"scores": score_details
})
return {
"recommendations": formatted_results,
"score_explanation": self._get_score_explanation()
}
@staticmethod
def _get_sentiment_label(sentiment_score: float) -> str:
if sentiment_score > 0.3:
return "积极"
elif sentiment_score < -0.3:
return "消极"
return "中性"
@staticmethod
def _validate_weights(weights: RecommendationWeights) -> bool:
return all(getattr(weights, field) >= 0 for field in weights.__dataclass_fields__)
@staticmethod
def _normalize_weights(weights: RecommendationWeights) -> RecommendationWeights:
total = weights.visibility + weights.sentiment + weights.popularity
if total == 0:
return RecommendationWeights(1/3, 1/3, 1/3)
return RecommendationWeights(
visibility=weights.visibility / total,
sentiment=weights.sentiment / total,
popularity=weights.popularity / total
)
@staticmethod
def _get_score_explanation() -> Dict[str, str]:
return {
"可信度": "内容可信度评估",
"情感倾向": "文本的情感分析结果",
"热度": "基于点赞和转发的热度分数"
}
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# 推文推荐系统
调整权重以获取个性化推荐
""")
with gr.Row():
with gr.Column(scale=1):
visibility_weight = gr.Slider(0, 1, 0.5, label="可信度权重", info="调整对内容可信度的重视程度")
sentiment_weight = gr.Slider(0, 1, 0.3, label="情感倾向权重", info="调整对情感倾向的重视程度")
popularity_weight = gr.Slider(0, 1, 0.2, label="热度权重", info="调整对内容热度的重视程度")
submit_btn = gr.Button("获取推荐", variant="primary")
with gr.Column(scale=2):
output_html = gr.HTML()
def format_recommendations(raw_recommendations):
html = '<div style="font-family: sans-serif;">'
# 添加评分说明
html += '''
<div style="margin-bottom: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 8px;">
<h3 style="margin-top: 0;">评分说明</h3>
<ul style="margin: 0;">
<li><strong>可信度</strong>:内容的可信程度评估</li>
<li><strong>情感倾向</strong>:文本的情感分析(积极/消极/中性)</li>
<li><strong>热度</strong>:基于点赞和转发的归一化分数</li>
</ul>
</div>
'''
# 显示推荐的tweets
for i, rec in enumerate(raw_recommendations["recommendations"], 1):
scores = rec["scores"]
html += f'''
<div style="margin-bottom: 15px; padding: 15px; border: 1px solid #ddd; border-radius: 8px;">
<div style="margin-bottom: 10px; font-size: 1.1em;">{rec["text"]}</div>
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 0.9em; color: #666;">
<span style="padding: 3px 8px; background-color: #e3f2fd; border-radius: 4px;">
总分: {scores["总分"]}
</span>
<span style="padding: 3px 8px; background-color: #e8f5e9; border-radius: 4px;">
可信度: {scores["可信度"]}
</span>
<span style="padding: 3px 8px; background-color: #fff3e0; border-radius: 4px;">
情感: {scores["情感倾向"]}
</span>
<span style="padding: 3px 8px; background-color: #fce4ec; border-radius: 4px;">
热度: {scores["热度"]}
</span>
<span style="padding: 3px 8px; background-color: #f3e5f5; border-radius: 4px;">
{scores["互动数"]}
</span>
</div>
</div>
'''
html += '</div>'
return html
submit_btn.click(
fn=lambda v, s, p: format_recommendations(
recommendation_system.get_recommendations(RecommendationWeights(v, s, p))
),
inputs=[visibility_weight, sentiment_weight, popularity_weight],
outputs=output_html
)
return interface
def main():
try:
recommendation_system = RecommendationSystem(
data_path=Path('twitter_dataset.csv')
)
interface = create_gradio_interface(recommendation_system)
interface.launch()
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise
if __name__ == "__main__":
main()