YixuanWang commited on
Commit
f3cf000
·
verified ·
1 Parent(s): 44b51fd

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +49 -35
app.py CHANGED
@@ -134,54 +134,68 @@ def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.I
134
  with gr.Blocks(theme=gr.themes.Soft()) as interface:
135
  gr.Markdown("""
136
  # 推文推荐系统
137
- 调整下方的权重来获取个性化推荐:
138
  """)
139
 
140
  with gr.Row():
141
  with gr.Column(scale=1):
142
- visibility_weight = gr.Slider(
143
- 0, 1, 0.5,
144
- label="可信度权重",
145
- info="调整对内容可信度的重视程度"
146
- )
147
- sentiment_weight = gr.Slider(
148
- 0, 1, 0.3,
149
- label="情感倾向权重",
150
- info="调整对情感倾向的重视程度"
151
- )
152
- popularity_weight = gr.Slider(
153
- 0, 1, 0.2,
154
- label="热度权重",
155
- info="调整对内容热度的重视程度"
156
- )
157
  submit_btn = gr.Button("获取推荐", variant="primary")
158
 
159
  with gr.Column(scale=2):
160
- results = gr.Dataframe(
161
- headers=["推文内容", "评分详情"],
162
- label="推荐结果"
163
- )
164
-
165
- def format_for_display(recommendations):
166
- rows = []
167
- for rec in recommendations["recommendations"]:
 
 
 
 
 
 
 
 
 
 
 
168
  scores = rec["scores"]
169
- score_text = (
170
- f"总分: {scores['总分']}\n"
171
- f"可信度: {scores['可信度']}\n"
172
- f"情感倾向: {scores['情感倾向']}\n"
173
- f"热度: {scores['热度']}\n"
174
- f"互动: {scores['互动数']}"
175
- )
176
- rows.append([rec["text"], score_text])
177
- return rows
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178
 
179
  submit_btn.click(
180
- fn=lambda v, s, p: format_for_display(
181
  recommendation_system.get_recommendations(RecommendationWeights(v, s, p))
182
  ),
183
  inputs=[visibility_weight, sentiment_weight, popularity_weight],
184
- outputs=results
185
  )
186
 
187
  return interface
 
134
  with gr.Blocks(theme=gr.themes.Soft()) as interface:
135
  gr.Markdown("""
136
  # 推文推荐系统
137
+ 调整权重以获取个性化推荐
138
  """)
139
 
140
  with gr.Row():
141
  with gr.Column(scale=1):
142
+ visibility_weight = gr.Slider(0, 1, 0.5, label="可信度权重", info="调整对内容可信度的重视程度")
143
+ sentiment_weight = gr.Slider(0, 1, 0.3, label="情感倾向权重", info="调整对情感倾向的重视程度")
144
+ popularity_weight = gr.Slider(0, 1, 0.2, label="热度权重", info="调整对内容热度的重视程度")
 
 
 
 
 
 
 
 
 
 
 
 
145
  submit_btn = gr.Button("获取推荐", variant="primary")
146
 
147
  with gr.Column(scale=2):
148
+ output_html = gr.HTML()
149
+
150
+ def format_recommendations(raw_recommendations):
151
+ html = '<div style="font-family: sans-serif;">'
152
+
153
+ # 添加评分说明
154
+ html += '''
155
+ <div style="margin-bottom: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 8px;">
156
+ <h3 style="margin-top: 0;">评分说明</h3>
157
+ <ul style="margin: 0;">
158
+ <li><strong>可信度</strong>:内容的可信程度评估</li>
159
+ <li><strong>情感倾向</strong>:文本的情感分析(积极/消极/中性)</li>
160
+ <li><strong>热度</strong>:基于点赞和转发的归一化分数</li>
161
+ </ul>
162
+ </div>
163
+ '''
164
+
165
+ # 显示推荐的tweets
166
+ for i, rec in enumerate(raw_recommendations["recommendations"], 1):
167
  scores = rec["scores"]
168
+ html += f'''
169
+ <div style="margin-bottom: 15px; padding: 15px; border: 1px solid #ddd; border-radius: 8px;">
170
+ <div style="margin-bottom: 10px; font-size: 1.1em;">{rec["text"]}</div>
171
+ <div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 0.9em; color: #666;">
172
+ <span style="padding: 3px 8px; background-color: #e3f2fd; border-radius: 4px;">
173
+ 总分: {scores["总分"]}
174
+ </span>
175
+ <span style="padding: 3px 8px; background-color: #e8f5e9; border-radius: 4px;">
176
+ 可信度: {scores["可信度"]}
177
+ </span>
178
+ <span style="padding: 3px 8px; background-color: #fff3e0; border-radius: 4px;">
179
+ 情感: {scores["情感倾向"]}
180
+ </span>
181
+ <span style="padding: 3px 8px; background-color: #fce4ec; border-radius: 4px;">
182
+ 热度: {scores["热度"]}
183
+ </span>
184
+ <span style="padding: 3px 8px; background-color: #f3e5f5; border-radius: 4px;">
185
+ {scores["互动数"]}
186
+ </span>
187
+ </div>
188
+ </div>
189
+ '''
190
+ html += '</div>'
191
+ return html
192
 
193
  submit_btn.click(
194
+ fn=lambda v, s, p: format_recommendations(
195
  recommendation_system.get_recommendations(RecommendationWeights(v, s, p))
196
  ),
197
  inputs=[visibility_weight, sentiment_weight, popularity_weight],
198
+ outputs=output_html
199
  )
200
 
201
  return interface