File size: 8,624 Bytes
efc4793 28fe915 efc4793 28fe915 f0cb7f7 28fe915 f0cb7f7 28fe915 f0cb7f7 28fe915 ab7af96 28fe915 f0cb7f7 28fe915 ab7af96 28fe915 ab7af96 28fe915 f0cb7f7 28fe915 f0cb7f7 28fe915 ab7af96 f0cb7f7 ab7af96 28fe915 ab7af96 28fe915 f0cb7f7 28fe915 ab7af96 f0cb7f7 ab7af96 28fe915 44b51fd 28fe915 ab7af96 f3cf000 ab7af96 f3cf000 ab7af96 f3cf000 44b51fd f3cf000 44b51fd ab7af96 f3cf000 44b51fd ab7af96 f3cf000 ab7af96 28fe915 f0cb7f7 28fe915 ab7af96 28fe915 f0cb7f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
import gradio as gr
import pandas as pd
import numpy as np
from textblob import TextBlob
from typing import List, Dict, Tuple
from dataclasses import dataclass
from pathlib import Path
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
@dataclass
class RecommendationWeights:
visibility: float
sentiment: float
popularity: float
class TweetPreprocessor:
def __init__(self, data_path: Path):
self.data = self._load_data(data_path)
@staticmethod
def _load_data(data_path: Path) -> pd.DataFrame:
try:
data = pd.read_csv(data_path)
required_columns = {'Text', 'Retweets', 'Likes'}
if not required_columns.issubset(data.columns):
raise ValueError(f"Missing required columns: {required_columns - set(data.columns)}")
return data
except Exception as e:
logger.error(f"Error loading data: {e}")
raise
def calculate_metrics(self) -> pd.DataFrame:
self.data['Sentiment'] = self.data['Text'].apply(self._get_sentiment)
self.data['Popularity'] = self._normalize_popularity()
self.data['Credibility'] = np.random.choice([0, 1], size=len(self.data), p=[0.3, 0.7])
return self.data
@staticmethod
def _get_sentiment(text: str) -> float:
try:
return TextBlob(str(text)).sentiment.polarity
except Exception as e:
logger.warning(f"Error calculating sentiment: {e}")
return 0.0
def _normalize_popularity(self) -> pd.Series:
popularity = self.data['Retweets'] + self.data['Likes']
return (popularity - popularity.min()) / (popularity.max() - popularity.min() + 1e-6)
class RecommendationSystem:
def __init__(self, data_path: Path):
self.preprocessor = TweetPreprocessor(data_path)
self.data = None
self.setup_system()
def setup_system(self):
self.data = self.preprocessor.calculate_metrics()
def get_recommendations(self, weights: RecommendationWeights, num_recommendations: int = 10) -> Dict:
if not self._validate_weights(weights):
return {"error": "Invalid weights provided"}
normalized_weights = self._normalize_weights(weights)
self.data['Final_Score'] = (
self.data['Credibility'] * normalized_weights.visibility +
self.data['Sentiment'] * normalized_weights.sentiment +
self.data['Popularity'] * normalized_weights.popularity
)
top_recommendations = (
self.data.nlargest(num_recommendations, 'Final_Score')
)
return self._format_recommendations(top_recommendations)
def _format_recommendations(self, recommendations: pd.DataFrame) -> Dict:
formatted_results = []
for _, row in recommendations.iterrows():
score_details = {
"总分": f"{row['Final_Score']:.2f}",
"可信度": "可信" if row['Credibility'] > 0 else "存疑",
"情感倾向": self._get_sentiment_label(row['Sentiment']),
"热度": f"{row['Popularity']:.2f}",
"互动数": f"点赞 {row['Likes']} · 转发 {row['Retweets']}"
}
formatted_results.append({
"text": row['Text'],
"scores": score_details
})
return {
"recommendations": formatted_results,
"score_explanation": self._get_score_explanation()
}
@staticmethod
def _get_sentiment_label(sentiment_score: float) -> str:
if sentiment_score > 0.3:
return "积极"
elif sentiment_score < -0.3:
return "消极"
return "中性"
@staticmethod
def _validate_weights(weights: RecommendationWeights) -> bool:
return all(getattr(weights, field) >= 0 for field in weights.__dataclass_fields__)
@staticmethod
def _normalize_weights(weights: RecommendationWeights) -> RecommendationWeights:
total = weights.visibility + weights.sentiment + weights.popularity
if total == 0:
return RecommendationWeights(1/3, 1/3, 1/3)
return RecommendationWeights(
visibility=weights.visibility / total,
sentiment=weights.sentiment / total,
popularity=weights.popularity / total
)
@staticmethod
def _get_score_explanation() -> Dict[str, str]:
return {
"可信度": "内容可信度评估",
"情感倾向": "文本的情感分析结果",
"热度": "基于点赞和转发的热度分数"
}
def create_gradio_interface(recommendation_system: RecommendationSystem) -> gr.Interface:
with gr.Blocks(theme=gr.themes.Soft()) as interface:
gr.Markdown("""
# 推文推荐系统
调整权重以获取个性化推荐
""")
with gr.Row():
with gr.Column(scale=1):
visibility_weight = gr.Slider(0, 1, 0.5, label="可信度权重", info="调整对内容可信度的重视程度")
sentiment_weight = gr.Slider(0, 1, 0.3, label="情感倾向权重", info="调整对情感倾向的重视程度")
popularity_weight = gr.Slider(0, 1, 0.2, label="热度权重", info="调整对内容热度的重视程度")
submit_btn = gr.Button("获取推荐", variant="primary")
with gr.Column(scale=2):
output_html = gr.HTML()
def format_recommendations(raw_recommendations):
html = '<div style="font-family: sans-serif;">'
# 添加评分说明
html += '''
<div style="margin-bottom: 20px; padding: 15px; background-color: #f5f5f5; border-radius: 8px;">
<h3 style="margin-top: 0;">评分说明</h3>
<ul style="margin: 0;">
<li><strong>可信度</strong>:内容的可信程度评估</li>
<li><strong>情感倾向</strong>:文本的情感分析(积极/消极/中性)</li>
<li><strong>热度</strong>:基于点赞和转发的归一化分数</li>
</ul>
</div>
'''
# 显示推荐的tweets
for i, rec in enumerate(raw_recommendations["recommendations"], 1):
scores = rec["scores"]
html += f'''
<div style="margin-bottom: 15px; padding: 15px; border: 1px solid #ddd; border-radius: 8px;">
<div style="margin-bottom: 10px; font-size: 1.1em;">{rec["text"]}</div>
<div style="display: flex; flex-wrap: wrap; gap: 10px; font-size: 0.9em; color: #666;">
<span style="padding: 3px 8px; background-color: #e3f2fd; border-radius: 4px;">
总分: {scores["总分"]}
</span>
<span style="padding: 3px 8px; background-color: #e8f5e9; border-radius: 4px;">
可信度: {scores["可信度"]}
</span>
<span style="padding: 3px 8px; background-color: #fff3e0; border-radius: 4px;">
情感: {scores["情感倾向"]}
</span>
<span style="padding: 3px 8px; background-color: #fce4ec; border-radius: 4px;">
热度: {scores["热度"]}
</span>
<span style="padding: 3px 8px; background-color: #f3e5f5; border-radius: 4px;">
{scores["互动数"]}
</span>
</div>
</div>
'''
html += '</div>'
return html
submit_btn.click(
fn=lambda v, s, p: format_recommendations(
recommendation_system.get_recommendations(RecommendationWeights(v, s, p))
),
inputs=[visibility_weight, sentiment_weight, popularity_weight],
outputs=output_html
)
return interface
def main():
try:
recommendation_system = RecommendationSystem(
data_path=Path('twitter_dataset.csv')
)
interface = create_gradio_interface(recommendation_system)
interface.launch()
except Exception as e:
logger.error(f"Application failed to start: {e}")
raise
if __name__ == "__main__":
main() |