|
---
|
|
comments: true
|
|
description: Object Counting Using Ultralytics YOLOv8
|
|
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
|
|
---
|
|
|
|
# Object Counting using Ultralytics YOLOv8 🚀
|
|
|
|
## What is Object Counting?
|
|
|
|
Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities.
|
|
|
|
<p align="center">
|
|
<br>
|
|
<iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0"
|
|
title="YouTube video player" frameborder="0"
|
|
allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"
|
|
allowfullscreen>
|
|
</iframe>
|
|
<br>
|
|
<strong>Watch:</strong> Object Counting using Ultralytics YOLOv8
|
|
</p>
|
|
|
|
## Advantages of Object Counting?
|
|
|
|
- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management.
|
|
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
|
|
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains.
|
|
|
|
## Real World Applications
|
|
|
|
| Logistics | Aquaculture |
|
|
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
|
|
|  |  |
|
|
| Conveyor Belt Packets Counting Using Ultralytics YOLOv8 | Fish Counting in Sea using Ultralytics YOLOv8 |
|
|
|
|
!!! Example "Object Counting using YOLOv8 Example"
|
|
|
|
=== "Count in Region"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
from ultralytics.solutions import object_counter
|
|
import cv2
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
|
assert cap.isOpened(), "Error reading video file"
|
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
|
|
|
# Define region points
|
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]
|
|
|
|
# Video writer
|
|
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
|
cv2.VideoWriter_fourcc(*'mp4v'),
|
|
fps,
|
|
(w, h))
|
|
|
|
# Init Object Counter
|
|
counter = object_counter.ObjectCounter()
|
|
counter.set_args(view_img=True,
|
|
reg_pts=region_points,
|
|
classes_names=model.names,
|
|
draw_tracks=True)
|
|
|
|
while cap.isOpened():
|
|
success, im0 = cap.read()
|
|
if not success:
|
|
print("Video frame is empty or video processing has been successfully completed.")
|
|
break
|
|
tracks = model.track(im0, persist=True, show=False)
|
|
|
|
im0 = counter.start_counting(im0, tracks)
|
|
video_writer.write(im0)
|
|
|
|
cap.release()
|
|
video_writer.release()
|
|
cv2.destroyAllWindows()
|
|
```
|
|
|
|
=== "Count in Polygon"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
from ultralytics.solutions import object_counter
|
|
import cv2
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
|
assert cap.isOpened(), "Error reading video file"
|
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
|
|
|
# Define region points as a polygon with 5 points
|
|
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]
|
|
|
|
# Video writer
|
|
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
|
cv2.VideoWriter_fourcc(*'mp4v'),
|
|
fps,
|
|
(w, h))
|
|
|
|
# Init Object Counter
|
|
counter = object_counter.ObjectCounter()
|
|
counter.set_args(view_img=True,
|
|
reg_pts=region_points,
|
|
classes_names=model.names,
|
|
draw_tracks=True)
|
|
|
|
while cap.isOpened():
|
|
success, im0 = cap.read()
|
|
if not success:
|
|
print("Video frame is empty or video processing has been successfully completed.")
|
|
break
|
|
tracks = model.track(im0, persist=True, show=False)
|
|
|
|
im0 = counter.start_counting(im0, tracks)
|
|
video_writer.write(im0)
|
|
|
|
cap.release()
|
|
video_writer.release()
|
|
cv2.destroyAllWindows()
|
|
```
|
|
|
|
=== "Count in Line"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
from ultralytics.solutions import object_counter
|
|
import cv2
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
|
assert cap.isOpened(), "Error reading video file"
|
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
|
|
|
# Define line points
|
|
line_points = [(20, 400), (1080, 400)]
|
|
|
|
# Video writer
|
|
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
|
cv2.VideoWriter_fourcc(*'mp4v'),
|
|
fps,
|
|
(w, h))
|
|
|
|
# Init Object Counter
|
|
counter = object_counter.ObjectCounter()
|
|
counter.set_args(view_img=True,
|
|
reg_pts=line_points,
|
|
classes_names=model.names,
|
|
draw_tracks=True)
|
|
|
|
while cap.isOpened():
|
|
success, im0 = cap.read()
|
|
if not success:
|
|
print("Video frame is empty or video processing has been successfully completed.")
|
|
break
|
|
tracks = model.track(im0, persist=True, show=False)
|
|
|
|
im0 = counter.start_counting(im0, tracks)
|
|
video_writer.write(im0)
|
|
|
|
cap.release()
|
|
video_writer.release()
|
|
cv2.destroyAllWindows()
|
|
```
|
|
|
|
=== "Specific Classes"
|
|
|
|
```python
|
|
from ultralytics import YOLO
|
|
from ultralytics.solutions import object_counter
|
|
import cv2
|
|
|
|
model = YOLO("yolov8n.pt")
|
|
cap = cv2.VideoCapture("path/to/video/file.mp4")
|
|
assert cap.isOpened(), "Error reading video file"
|
|
w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))
|
|
|
|
line_points = [(20, 400), (1080, 400)] # line or region points
|
|
classes_to_count = [0, 2] # person and car classes for count
|
|
|
|
# Video writer
|
|
video_writer = cv2.VideoWriter("object_counting_output.avi",
|
|
cv2.VideoWriter_fourcc(*'mp4v'),
|
|
fps,
|
|
(w, h))
|
|
|
|
# Init Object Counter
|
|
counter = object_counter.ObjectCounter()
|
|
counter.set_args(view_img=True,
|
|
reg_pts=line_points,
|
|
classes_names=model.names,
|
|
draw_tracks=True)
|
|
|
|
while cap.isOpened():
|
|
success, im0 = cap.read()
|
|
if not success:
|
|
print("Video frame is empty or video processing has been successfully completed.")
|
|
break
|
|
tracks = model.track(im0, persist=True, show=False,
|
|
classes=classes_to_count)
|
|
|
|
im0 = counter.start_counting(im0, tracks)
|
|
video_writer.write(im0)
|
|
|
|
cap.release()
|
|
video_writer.release()
|
|
cv2.destroyAllWindows()
|
|
```
|
|
|
|
???+ tip "Region is Movable"
|
|
|
|
You can move the region anywhere in the frame by clicking on its edges
|
|
|
|
### Optional Arguments `set_args`
|
|
|
|
| Name | Type | Default | Description |
|
|
|-----------------------|-------------|----------------------------|-----------------------------------------------|
|
|
| `view_img` | `bool` | `False` | Display frames with counts |
|
|
| `view_in_counts` | `bool` | `True` | Display in-counts only on video frame |
|
|
| `view_out_counts` | `bool` | `True` | Display out-counts only on video frame |
|
|
| `line_thickness` | `int` | `2` | Increase bounding boxes thickness |
|
|
| `reg_pts` | `list` | `[(20, 400), (1260, 400)]` | Points defining the Region Area |
|
|
| `classes_names` | `dict` | `model.model.names` | Dictionary of Class Names |
|
|
| `region_color` | `RGB Color` | `(255, 0, 255)` | Color of the Object counting Region or Line |
|
|
| `track_thickness` | `int` | `2` | Thickness of Tracking Lines |
|
|
| `draw_tracks` | `bool` | `False` | Enable drawing Track lines |
|
|
| `track_color` | `RGB Color` | `(0, 255, 0)` | Color for each track line |
|
|
| `line_dist_thresh` | `int` | `15` | Euclidean Distance threshold for line counter |
|
|
| `count_txt_thickness` | `int` | `2` | Thickness of Object counts text |
|
|
| `count_txt_color` | `RGB Color` | `(0, 0, 0)` | Foreground color for Object counts text |
|
|
| `count_color` | `RGB Color` | `(255, 255, 255)` | Background color for Object counts text |
|
|
| `region_thickness` | `int` | `5` | Thickness for object counter region or line |
|
|
|
|
### Arguments `model.track`
|
|
|
|
| Name | Type | Default | Description |
|
|
|-----------|---------|----------------|-------------------------------------------------------------|
|
|
| `source` | `im0` | `None` | source directory for images or videos |
|
|
| `persist` | `bool` | `False` | persisting tracks between frames |
|
|
| `tracker` | `str` | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort' |
|
|
| `conf` | `float` | `0.3` | Confidence Threshold |
|
|
| `iou` | `float` | `0.5` | IOU Threshold |
|
|
| `classes` | `list` | `None` | filter results by class, i.e. classes=0, or classes=[0,2,3] |
|
|
| `verbose` | `bool` | `True` | Display the object tracking results |
|
|
|