File size: 12,479 Bytes
c254ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
---

comments: true
description: Object Counting Using Ultralytics YOLOv8
keywords: Ultralytics, YOLOv8, Object Detection, Object Counting, Object Tracking, Notebook, IPython Kernel, CLI, Python SDK
---


# Object Counting using Ultralytics YOLOv8 🚀

## What is Object Counting?

Object counting with [Ultralytics YOLOv8](https://github.com/ultralytics/ultralytics/) involves accurate identification and counting of specific objects in videos and camera streams. YOLOv8 excels in real-time applications, providing efficient and precise object counting for various scenarios like crowd analysis and surveillance, thanks to its state-of-the-art algorithms and deep learning capabilities.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Ag2e-5_NpS0"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Object Counting using Ultralytics YOLOv8
</p>

## Advantages of Object Counting?

- **Resource Optimization:** Object counting facilitates efficient resource management by providing accurate counts, and optimizing resource allocation in applications like inventory management.
- **Enhanced Security:** Object counting enhances security and surveillance by accurately tracking and counting entities, aiding in proactive threat detection.
- **Informed Decision-Making:** Object counting offers valuable insights for decision-making, optimizing processes in retail, traffic management, and various other domains.

## Real World Applications

|                                                                           Logistics                                                                           |                                                                     Aquaculture                                                                     |
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------:|:---------------------------------------------------------------------------------------------------------------------------------------------------:|
| ![Conveyor Belt Packets Counting Using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/70e2d106-510c-4c6c-a57a-d34a765aa757) | ![Fish Counting in Sea using Ultralytics YOLOv8](https://github.com/RizwanMunawar/ultralytics/assets/62513924/c60d047b-3837-435f-8d29-bb9fc95d2191) |
|                                                    Conveyor Belt Packets Counting Using Ultralytics YOLOv8                                                    |                                                    Fish Counting in Sea using Ultralytics YOLOv8                                                    |

!!! Example "Object Counting using YOLOv8 Example"

    === "Count in Region"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import object_counter

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Define region points

        region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)]


        # Video writer

        video_writer = cv2.VideoWriter("object_counting_output.avi",

                               cv2.VideoWriter_fourcc(*'mp4v'),

                               fps,

                               (w, h))


        # Init Object Counter

        counter = object_counter.ObjectCounter()

        counter.set_args(view_img=True,

                         reg_pts=region_points,

                         classes_names=model.names,

                         draw_tracks=True)


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False)


            im0 = counter.start_counting(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```

    

    === "Count in Polygon"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import object_counter

        import cv2

        

        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))

        

        # Define region points as a polygon with 5 points

        region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360), (20, 400)]

        

        # Video writer

        video_writer = cv2.VideoWriter("object_counting_output.avi",

                               cv2.VideoWriter_fourcc(*'mp4v'),

                               fps,

                               (w, h))

        

        # Init Object Counter

        counter = object_counter.ObjectCounter()

        counter.set_args(view_img=True,

                         reg_pts=region_points,

                         classes_names=model.names,

                         draw_tracks=True)

        

        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False)

        

            im0 = counter.start_counting(im0, tracks)

            video_writer.write(im0)

        

        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```

    

    === "Count in Line"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import object_counter

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        # Define line points

        line_points = [(20, 400), (1080, 400)]


        # Video writer

        video_writer = cv2.VideoWriter("object_counting_output.avi",

                               cv2.VideoWriter_fourcc(*'mp4v'),

                               fps,

                               (w, h))


        # Init Object Counter

        counter = object_counter.ObjectCounter()

        counter.set_args(view_img=True,

                         reg_pts=line_points,

                         classes_names=model.names,

                         draw_tracks=True)


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False)


            im0 = counter.start_counting(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```


    === "Specific Classes"


        ```python

        from ultralytics import YOLO

        from ultralytics.solutions import object_counter

        import cv2


        model = YOLO("yolov8n.pt")

        cap = cv2.VideoCapture("path/to/video/file.mp4")

        assert cap.isOpened(), "Error reading video file"

        w, h, fps = (int(cap.get(x)) for x in (cv2.CAP_PROP_FRAME_WIDTH, cv2.CAP_PROP_FRAME_HEIGHT, cv2.CAP_PROP_FPS))


        line_points = [(20, 400), (1080, 400)]  # line or region points

        classes_to_count = [0, 2]  # person and car classes for count


        # Video writer

        video_writer = cv2.VideoWriter("object_counting_output.avi",

                               cv2.VideoWriter_fourcc(*'mp4v'),

                               fps,

                               (w, h))


        # Init Object Counter

        counter = object_counter.ObjectCounter()

        counter.set_args(view_img=True,

                         reg_pts=line_points,

                         classes_names=model.names,

                         draw_tracks=True)


        while cap.isOpened():

            success, im0 = cap.read()

            if not success:

                print("Video frame is empty or video processing has been successfully completed.")

                break

            tracks = model.track(im0, persist=True, show=False,

                                 classes=classes_to_count)


            im0 = counter.start_counting(im0, tracks)

            video_writer.write(im0)


        cap.release()

        video_writer.release()

        cv2.destroyAllWindows()

        ```


???+ tip "Region is Movable"

    You can move the region anywhere in the frame by clicking on its edges


### Optional Arguments `set_args`



| Name                  | Type        | Default                    | Description                                   |

|-----------------------|-------------|----------------------------|-----------------------------------------------|

| `view_img`            | `bool`      | `False`                    | Display frames with counts                    |
| `view_in_counts`      | `bool`      | `True`                     | Display in-counts only on video frame         |
| `view_out_counts`     | `bool`      | `True`                     | Display out-counts only on video frame        |
| `line_thickness`      | `int`       | `2`                        | Increase bounding boxes thickness             |
| `reg_pts`             | `list`      | `[(20, 400), (1260, 400)]` | Points defining the Region Area               |
| `classes_names`       | `dict`      | `model.model.names`        | Dictionary of Class Names                     |
| `region_color`        | `RGB Color` | `(255, 0, 255)`            | Color of the Object counting Region or Line   |
| `track_thickness`     | `int`       | `2`                        | Thickness of Tracking Lines                   |
| `draw_tracks`         | `bool`      | `False`                    | Enable drawing Track lines                    |
| `track_color`         | `RGB Color` | `(0, 255, 0)`              | Color for each track line                     |
| `line_dist_thresh`    | `int`       | `15`                       | Euclidean Distance threshold for line counter |
| `count_txt_thickness` | `int`       | `2`                        | Thickness of Object counts text               |
| `count_txt_color`     | `RGB Color` | `(0, 0, 0)`                | Foreground color for Object counts text       |
| `count_color`         | `RGB Color` | `(255, 255, 255)`          | Background color for Object counts text       |
| `region_thickness`    | `int`       | `5`                        | Thickness for object counter region or line   |

### Arguments `model.track`

| Name      | Type    | Default        | Description                                                 |
|-----------|---------|----------------|-------------------------------------------------------------|
| `source`  | `im0`   | `None`         | source directory for images or videos                       |
| `persist` | `bool`  | `False`        | persisting tracks between frames                            |
| `tracker` | `str`   | `botsort.yaml` | Tracking method 'bytetrack' or 'botsort'                    |
| `conf`    | `float` | `0.3`          | Confidence Threshold                                        |
| `iou`     | `float` | `0.5`          | IOU Threshold                                               |
| `classes` | `list`  | `None`         | filter results by class, i.e. classes=0, or classes=[0,2,3] |
| `verbose` | `bool`  | `True`         | Display the object tracking results                         |