DoctorAI / app.py
Xolkin's picture
Update app.py
ca1d8ee verified
raw
history blame
1.64 kB
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
# Подключаем модель и токенизатор
model_name = "distilgpt2"
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
def respond(message, history, system_message, max_tokens, temperature, top_p):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
input_text = "\n".join([msg["content"] for msg in messages])
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
outputs = model.generate(
inputs["input_ids"],
max_length=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
response += "\nСделано больницей EMS штата Alta!"
return response
# Интерфейс Gradio
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(value="Здравствуйте. Отвечай кратко...", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"),
],
outputs="text",
)
demo.launch()