import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Подключаем модель и токенизатор model_name = "distilgpt2" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) def respond(message, history, system_message, max_tokens, temperature, top_p): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) input_text = "\n".join([msg["content"] for msg in messages]) inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True) outputs = model.generate( inputs["input_ids"], max_length=max_tokens, temperature=temperature, top_p=top_p, do_sample=True, ) response = tokenizer.decode(outputs[0], skip_special_tokens=True) response += "\nСделано больницей EMS штата Alta!" return response # Интерфейс Gradio demo = gr.Interface( fn=respond, inputs=[ gr.Textbox(value="Здравствуйте. Отвечай кратко...", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"), ], outputs="text", ) demo.launch()