Update app.py
Browse files
app.py
CHANGED
@@ -2,19 +2,11 @@ import gradio as gr
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Подключаем модель и токенизатор
|
5 |
-
model_name = "distilgpt2"
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
-
def respond(
|
10 |
-
message,
|
11 |
-
history: list[tuple[str, str]],
|
12 |
-
system_message,
|
13 |
-
max_tokens,
|
14 |
-
temperature,
|
15 |
-
top_p,
|
16 |
-
):
|
17 |
-
# Создаем входные данные
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
|
20 |
for val in history:
|
@@ -22,17 +14,13 @@ def respond(
|
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
# Добавляем последнее сообщение пользователя
|
27 |
messages.append({"role": "user", "content": message})
|
28 |
|
29 |
-
# Объединяем все сообщения в один текст
|
30 |
input_text = "\n".join([msg["content"] for msg in messages])
|
31 |
|
32 |
-
# Токенизация текста
|
33 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
34 |
|
35 |
-
# Генерация ответа моделью
|
36 |
outputs = model.generate(
|
37 |
inputs["input_ids"],
|
38 |
max_length=max_tokens,
|
@@ -41,31 +29,20 @@ def respond(
|
|
41 |
do_sample=True,
|
42 |
)
|
43 |
|
44 |
-
# Декодируем результат в строку
|
45 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
46 |
-
|
47 |
-
# Добавляем подпись
|
48 |
response += "\nСделано больницей EMS штата Alta!"
|
49 |
-
|
50 |
return response
|
51 |
|
52 |
-
#
|
53 |
demo = gr.Interface(
|
54 |
fn=respond,
|
55 |
inputs=[
|
56 |
-
gr.Textbox(value="Здравствуйте. Отвечай
|
57 |
-
gr.Slider(minimum=1, maximum=2048, value=512,
|
58 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7,
|
59 |
-
gr.Slider(
|
60 |
-
minimum=0.1,
|
61 |
-
maximum=1.0,
|
62 |
-
value=0.95,
|
63 |
-
step=0.05,
|
64 |
-
label="Top-p (nucleus sampling)",
|
65 |
-
),
|
66 |
],
|
67 |
-
|
68 |
)
|
69 |
|
70 |
-
|
71 |
-
demo.launch()
|
|
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
4 |
# Подключаем модель и токенизатор
|
5 |
+
model_name = "distilgpt2"
|
6 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
7 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
|
9 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
messages = [{"role": "system", "content": system_message}]
|
11 |
|
12 |
for val in history:
|
|
|
14 |
messages.append({"role": "user", "content": val[0]})
|
15 |
if val[1]:
|
16 |
messages.append({"role": "assistant", "content": val[1]})
|
17 |
+
|
|
|
18 |
messages.append({"role": "user", "content": message})
|
19 |
|
|
|
20 |
input_text = "\n".join([msg["content"] for msg in messages])
|
21 |
|
|
|
22 |
inputs = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True)
|
23 |
|
|
|
24 |
outputs = model.generate(
|
25 |
inputs["input_ids"],
|
26 |
max_length=max_tokens,
|
|
|
29 |
do_sample=True,
|
30 |
)
|
31 |
|
|
|
32 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
33 |
response += "\nСделано больницей EMS штата Alta!"
|
|
|
34 |
return response
|
35 |
|
36 |
+
# Интерфейс Gradio
|
37 |
demo = gr.Interface(
|
38 |
fn=respond,
|
39 |
inputs=[
|
40 |
+
gr.Textbox(value="Здравствуйте. Отвечай кратко...", label="System message"),
|
41 |
+
gr.Slider(minimum=1, maximum=2048, value=512, label="Max Tokens"),
|
42 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, label="Temperature"),
|
43 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
],
|
45 |
+
outputs="text",
|
46 |
)
|
47 |
|
48 |
+
demo.launch()
|
|