Spaces:
Paused
Paused
File size: 4,653 Bytes
5ba996d 130d634 5ba996d 130d634 0b15668 11deb71 d524505 11deb71 5ba996d bc2a7e3 5ba996d 11deb71 5ba996d 11deb71 5ba996d 49f3a23 5ba996d 35294b9 5ba996d 49f3a23 5ba996d 6d8ed0e 11deb71 5ba996d 35294b9 49f3a23 6d8ed0e 5ba996d 49f3a23 35294b9 130d634 11deb71 6d8ed0e 11deb71 130d634 ff1e41f 0b15668 130d634 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
import numpy as np
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR)
class TransformerChatbot(Model):
def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
super(TransformerChatbot, self).__init__()
self.embedding = Embedding(vocab_size, d_model)
self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
self.norm1 = LayerNormalization(epsilon=1e-6)
self.dropout1 = Dropout(dropout_rate)
self.dense1 = Dense(ff_dim, activation="relu")
self.dense2 = Dense(d_model)
self.norm2 = LayerNormalization(epsilon=1e-6)
self.dropout2 = Dropout(dropout_rate)
self.flatten = tf.keras.layers.Flatten()
self.fc = Dense(vocab_size, activation="softmax")
self.max_len = max_len
def call(self, inputs):
x = self.embedding(inputs)
# Masking
mask = self.create_padding_mask(inputs)
attn_output = self.attention(x, x, x, attention_mask=mask)
x = x + attn_output
x = self.norm1(x)
x = self.dropout1(x)
x = self.dense1(x)
x = self.dense2(x)
x = self.norm2(x)
x = self.dropout2(x)
x = self.fc(x)
return x
def create_padding_mask(self, seq):
mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :]
def completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2):
with open(datafile,"r") as f:
text = f.read()
text = text.lower()
words = text.split()
loaded_dict = np.load(dict, allow_pickle=True)
word_to_num = loaded_dict["word_to_num"].item()
num_to_word = loaded_dict["num_to_word"].item()
X = []
Y = []
for i in range(len(words)-1):
word = words[i]
next_word = words[i+1]
X.append(word_to_num[word])
Y.append(word_to_num[next_word])
Y.append(0)
X.append(word_to_num[words[-1]])
X_train = pad_sequences([X])
y_train = pad_sequences([Y])
chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
chatbot.load_weights(weights)
chatbot.build(input_shape=(None, max_len)) # Build the model
chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
for i in range(1):
other_text1 = text2
other_text1 = other_text1.lower()
other_words1 = other_text1.split()
other_num1 = [word_to_num[word] for word in other_words1]
given_X1 = other_num1
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
output_sentence = ""
for _ in range(len):
predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
predicted_token = predicted_token.item()
out = num_to_word[predicted_token]
output_sentence = out
given_X1 = given_X1[1:]
given_X1.append(predicted_token)
input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
out2 = output_sentence
return out2
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")
text2 = st.text_input('Enter word: ') #text is stored in this variable
if option == '13M':
option2 = st.selectbox('Type',('word','sentence'))
if option2 == 'word':
len = 1
else:
len = 13
vocab_size = 100000
max_len = 1
d_model = 64 # 64 , 1024
n_head = 4 # 8 , 16
ff_dim = 256 # 256 , 2048
dropout_rate = 0.1 # 0.5 , 0.2
weights = "predict3"
datafile = "data2.txt"
dict = "dict_predict3.bin.npz"
out2 = completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2)
st.write("Predicted Text: ")
st.write(out2)
elif option=="26M":
option2 = st.selectbox('Type',('word','sentence'))
if option2 == 'word':
len = 1
else:
len = 13
else:
out2 = "Error: Wrong Model Selected"
st.write(out2)
|