File size: 4,653 Bytes
5ba996d
 
 
 
 
 
 
130d634
 
5ba996d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130d634
0b15668
11deb71
d524505
 
 
11deb71
5ba996d
 
bc2a7e3
 
 
 
 
 
 
 
 
 
5ba996d
 
11deb71
5ba996d
 
 
11deb71
5ba996d
 
49f3a23
5ba996d
35294b9
5ba996d
 
49f3a23
5ba996d
 
6d8ed0e
11deb71
5ba996d
 
 
35294b9
49f3a23
6d8ed0e
 
5ba996d
 
 
49f3a23
35294b9
130d634
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11deb71
6d8ed0e
11deb71
130d634
 
 
 
 
ff1e41f
0b15668
 
130d634
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import streamlit as st
import tensorflow as tf
from keras.layers import Input, Dense, Embedding, MultiHeadAttention
from keras.layers import Dropout, LayerNormalization
from keras.models import Model
from keras.utils import pad_sequences
import numpy as np
import logging
logging.getLogger('tensorflow').setLevel(logging.ERROR)
class TransformerChatbot(Model):
    def __init__(self, vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate):
        super(TransformerChatbot, self).__init__()
        self.embedding = Embedding(vocab_size, d_model)
        self.attention = MultiHeadAttention(num_heads=n_head, key_dim=d_model)
        self.norm1 = LayerNormalization(epsilon=1e-6)
        self.dropout1 = Dropout(dropout_rate)
        self.dense1 = Dense(ff_dim, activation="relu")
        self.dense2 = Dense(d_model)
        self.norm2 = LayerNormalization(epsilon=1e-6)
        self.dropout2 = Dropout(dropout_rate)
        self.flatten = tf.keras.layers.Flatten()
        self.fc = Dense(vocab_size, activation="softmax")
        self.max_len = max_len

    def call(self, inputs):
        x = self.embedding(inputs)
        # Masking
        mask = self.create_padding_mask(inputs)
        attn_output = self.attention(x, x, x, attention_mask=mask)
        x = x + attn_output
        x = self.norm1(x)
        x = self.dropout1(x)
        x = self.dense1(x)
        x = self.dense2(x)
        x = self.norm2(x)
        x = self.dropout2(x)
        x = self.fc(x)
        return x

    def create_padding_mask(self, seq):
        mask = tf.cast(tf.math.equal(seq, 0), tf.float32)
        return mask[:, tf.newaxis, tf.newaxis, :]
def completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2):

    with open(datafile,"r") as f:
        text = f.read()
    text = text.lower()
    words = text.split()
    loaded_dict = np.load(dict, allow_pickle=True)
    word_to_num = loaded_dict["word_to_num"].item()
    num_to_word = loaded_dict["num_to_word"].item()
    X = []
    Y = []
    for i in range(len(words)-1):
        word = words[i]
        next_word = words[i+1]
        X.append(word_to_num[word])
        Y.append(word_to_num[next_word])
    Y.append(0)

    X.append(word_to_num[words[-1]])
    X_train = pad_sequences([X])
    y_train = pad_sequences([Y])
    


    chatbot = TransformerChatbot(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate)
    chatbot.load_weights(weights)
    chatbot.build(input_shape=(None, max_len)) # Build the model
    chatbot.compile(optimizer="adam", loss="sparse_categorical_crossentropy")
    
    for i in range(1):
        other_text1 = text2
        other_text1 = other_text1.lower()
        other_words1 = other_text1.split()
        other_num1 = [word_to_num[word] for word in other_words1]
        given_X1 = other_num1
        input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')
        output_sentence = ""
        for _ in range(len):
            predicted_token = np.argmax(chatbot.predict(input_sequence1), axis=-1)
            predicted_token = predicted_token.item()
            out = num_to_word[predicted_token]
            
    
            output_sentence = out
            
            given_X1 = given_X1[1:]
            given_X1.append(predicted_token)
            input_sequence1 = pad_sequences([given_X1], maxlen=max_len, padding='post')

        out2 = output_sentence
        return out2
st.title("UniGLM TEXT completion Model")
st.subheader("Next Word Prediction AI Model by Webraft-AI")
#Picking what NLP task you want to do
option = st.selectbox('Model',('13M','26M')) #option is stored in this variable
#Textbox for text user is entering
st.subheader("Enter a word from which a sentence / word would be predicted")

text2 = st.text_input('Enter word: ') #text is stored in this variable


if option == '13M':
    option2 = st.selectbox('Type',('word','sentence'))
    if option2 == 'word':
        len = 1
    else:
        len = 13
    vocab_size = 100000
    max_len = 1
    d_model = 64  # 64 , 1024
    n_head = 4  # 8 , 16
    ff_dim = 256  # 256 , 2048
    dropout_rate = 0.1  # 0.5 , 0.2
    weights = "predict3"
    datafile = "data2.txt"
    dict = "dict_predict3.bin.npz"
    out2 = completion_model(vocab_size, max_len, d_model, n_head, ff_dim, dropout_rate,weights,datafile,dict,len,text2)
    st.write("Predicted Text: ")
    st.write(out2)
        
    
elif option=="26M":
    option2 = st.selectbox('Type',('word','sentence'))
    if option2 == 'word':
        len = 1
    else:
        len = 13
    
else:
    out2 = "Error: Wrong Model Selected"
    
    st.write(out2)